BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 28755541)

  • 1. Vaccines targeting helper T cells for cancer immunotherapy.
    Melssen M; Slingluff CL
    Curr Opin Immunol; 2017 Aug; 47():85-92. PubMed ID: 28755541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD40 ligand-expressing recombinant vaccinia virus promotes the generation of CD8(+) central memory T cells.
    Trella E; Raafat N; Mengus C; Traunecker E; Governa V; Heidtmann S; Heberer M; Oertli D; Spagnoli GC; Zajac P
    Eur J Immunol; 2016 Feb; 46(2):420-31. PubMed ID: 26561341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Characterization of an HLA-DPB1*04: 01-restricted MAGE-A3 T-Cell Receptor for Cancer Immunotherapy.
    Yao X; Lu YC; Parker LL; Li YF; El-Gamil M; Black MA; Xu H; Feldman SA; van der Bruggen P; Rosenberg SA; Robbins PF
    J Immunother; 2016 Jun; 39(5):191-201. PubMed ID: 27163739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Peptide Vaccines to Induce Robust Antitumor CD4 T-cell Responses.
    Kumai T; Lee S; Cho HI; Sultan H; Kobayashi H; Harabuchi Y; Celis E
    Cancer Immunol Res; 2017 Jan; 5(1):72-83. PubMed ID: 27941004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting antitumor CD4 helper T cells with universal tumor-reactive helper peptides derived from telomerase for cancer vaccine.
    Adotévi O; Dosset M; Galaine J; Beziaud L; Godet Y; Borg C
    Hum Vaccin Immunother; 2013 May; 9(5):1073-7. PubMed ID: 23357860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helper function of memory CD8+ T cells: heterologous CD8+ T cells support the induction of therapeutic cancer immunity.
    Nakamura Y; Watchmaker P; Urban J; Sheridan B; Giermasz A; Nishimura F; Sasaki K; Cumberland R; Muthuswamy R; Mailliard RB; Larregina AT; Falo LD; Gooding W; Storkus WJ; Okada H; Hendricks RL; Kalinski P
    Cancer Res; 2007 Oct; 67(20):10012-8. PubMed ID: 17942935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of IL-10-inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent antitumor activity.
    Cecil DL; Holt GE; Park KH; Gad E; Rastetter L; Childs J; Higgins D; Disis ML
    Cancer Res; 2014 May; 74(10):2710-8. PubMed ID: 24778415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer immunotherapy: moving forward with peptide T cell vaccines.
    Kumai T; Fan A; Harabuchi Y; Celis E
    Curr Opin Immunol; 2017 Aug; 47():57-63. PubMed ID: 28734176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing neoantigen specific CD4 T cells for cancer immunotherapy.
    Brightman SE; Naradikian MS; Miller AM; Schoenberger SP
    J Leukoc Biol; 2020 Apr; 107(4):625-633. PubMed ID: 32170883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting self and neo-epitopes with a modular self-adjuvanting cancer vaccine.
    Belnoue E; Mayol JF; Carboni S; Di Berardino Besson W; Dupuychaffray E; Nelde A; Stevanovic S; Santiago-Raber ML; Walker PR; Derouazi M
    JCI Insight; 2019 Apr; 5(11):. PubMed ID: 31013258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of CD4(+) T cell help generates corrupt CD8(+) effector T cells in sarcoma-bearing Swiss mice treated with NLGP vaccine.
    Ghosh S; Sarkar M; Ghosh T; Guha I; Bhuniya A; Biswas J; Mallick A; Bose A; Baral R
    Immunol Lett; 2016 Jul; 175():31-9. PubMed ID: 27178306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity.
    Fotin-Mleczek M; Duchardt KM; Lorenz C; Pfeiffer R; Ojkić-Zrna S; Probst J; Kallen KJ
    J Immunother; 2011 Jan; 34(1):1-15. PubMed ID: 21150709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human leucocyte antigen class I-redirected anti-tumour CD4
    Tan MP; Dolton GM; Gerry AB; Brewer JE; Bennett AD; Pumphrey NJ; Jakobsen BK; Sewell AK
    Clin Exp Immunol; 2017 Jan; 187(1):124-137. PubMed ID: 27324616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation and Regulation of T
    Basu A; Ramamoorthi G; Albert G; Gallen C; Beyer A; Snyder C; Koski G; Disis ML; Czerniecki BJ; Kodumudi K
    Front Immunol; 2021; 12():669474. PubMed ID: 34012451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Th9 Cell Differentiation and Its Dual Effects in Tumor Development.
    Chen T; Guo J; Cai Z; Li B; Sun L; Shen Y; Wang S; Wang Z; Wang Z; Wang Y; Zhou H; Cai Z; Ye Z
    Front Immunol; 2020; 11():1026. PubMed ID: 32508847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen.
    Wculek SK; Amores-Iniesta J; Conde-Garrosa R; Khouili SC; Melero I; Sancho D
    J Immunother Cancer; 2019 Apr; 7(1):100. PubMed ID: 30961656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective antigen-specific CD4(+) T-cell, but not CD8(+) T- or B-cell, tolerance corrupts cancer immunotherapy.
    Snook AE; Magee MS; Schulz S; Waldman SA
    Eur J Immunol; 2014 Jul; 44(7):1956-66. PubMed ID: 24771148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4
    Hernandez R; LaPorte KM; Hsiung S; Santos Savio A; Malek TR
    J Immunother Cancer; 2021 Sep; 9(9):. PubMed ID: 34475132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-reactive CD4+ T cells: plasticity beyond helper and regulatory activities.
    Quezada SA; Peggs KS
    Immunotherapy; 2011 Aug; 3(8):915-7. PubMed ID: 21843076
    [No Abstract]   [Full Text] [Related]  

  • 20. MHC class II-restricted tumor antigens recognized by CD4+ T cells: new strategies for cancer vaccine design.
    Zeng G
    J Immunother; 2001; 24(3):195-204. PubMed ID: 11394496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.