BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28755559)

  • 21. An integrated approach for enhanced protein conjugation and capture with viral nanotemplates and hydrogel microparticle platforms via rapid bioorthogonal reactions.
    Jung S; Yi H
    Langmuir; 2014 Jul; 30(26):7762-70. PubMed ID: 24937661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.
    Munier P; Gordeyeva K; Bergström L; Fall AB
    Biomacromolecules; 2016 May; 17(5):1875-81. PubMed ID: 27071304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of chitosan-poly(ethylene glycol) hybrid hydrogel microparticles via replica molding and its application toward facile conjugation of biomolecules.
    Jung S; Yi H
    Langmuir; 2012 Dec; 28(49):17061-70. PubMed ID: 23163737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replica-mold nanopatterned PHEMA hydrogel surfaces for ophthalmic applications.
    Krajňák T; Černá E; Šuráňová M; Šamořil T; Zicha D; Vojtová L; Čechal J
    Sci Rep; 2022 Aug; 12(1):14497. PubMed ID: 36008433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color.
    Haque MA; Kamita G; Kurokawa T; Tsujii K; Gong JP
    Adv Mater; 2010 Dec; 22(45):5110-4. PubMed ID: 20839252
    [No Abstract]   [Full Text] [Related]  

  • 26. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.
    Zhang W; Huang G; Ng K; Ji Y; Gao B; Huang L; Zhou J; Lu TJ; Xu F
    Biomater Sci; 2018 Mar; 6(4):885-892. PubMed ID: 29511758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecularly imprinted polymers for tobacco mosaic virus recognition.
    Bolisay LD; Culver JN; Kofinas P
    Biomaterials; 2006 Aug; 27(22):4165-8. PubMed ID: 16574216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.
    Li M; Yang Q; Liu H; Qiu M; Lu TJ; Xu F
    Small; 2016 Sep; 12(33):4492-500. PubMed ID: 27418038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization.
    Niu Z; Bruckman MA; Li S; Lee LA; Lee B; Pingali SV; Thiyagarajan P; Wang Q
    Langmuir; 2007 Jun; 23(12):6719-24. PubMed ID: 17474763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance.
    Rose JC; Cámara-Torres M; Rahimi K; Köhler J; Möller M; De Laporte L
    Nano Lett; 2017 Jun; 17(6):3782-3791. PubMed ID: 28326790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid crystalline composite hydrogels with large pH-triggered anisotropic swelling for embolotherapy.
    Zhang Y; Luo Y; Gao S; Zou L; Guan Y; Zhang Y
    Acta Biomater; 2024 Jan; 174():206-216. PubMed ID: 38101558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion-Induced Hydrogel Formation and Nematic Ordering of Nanocrystalline Cellulose Suspensions.
    Bertsch P; Isabettini S; Fischer P
    Biomacromolecules; 2017 Dec; 18(12):4060-4066. PubMed ID: 29028331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of plant viruses in electron beam lithography nanostructures.
    Alonso JM; Ondarçuhu T; Bittner AM
    Nanotechnology; 2013 Mar; 24(10):105305. PubMed ID: 23435288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.
    Zhou C; Wu Q; Yue Y; Zhang Q
    J Colloid Interface Sci; 2011 Jan; 353(1):116-23. PubMed ID: 20932533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications.
    Azizi S; Mohamad R; Abdul Rahim R; Mohammadinejad R; Bin Ariff A
    Int J Biol Macromol; 2017 Nov; 104(Pt A):423-431. PubMed ID: 28591593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites.
    Frimpong RA; Fraser S; Hilt JZ
    J Biomed Mater Res A; 2007 Jan; 80(1):1-6. PubMed ID: 16941587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor.
    Zhou X; Li C; Shao Y; Chen C; Yang Z; Liu D
    Chem Commun (Camb); 2016 Aug; 52(70):10668-71. PubMed ID: 27506763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of a catalytic activity of gold nanoparticles embedded in DNA hydrogel by swelling/shrinking the hydrogel's matrix.
    Che Y; Zinchenko A; Murata S
    J Colloid Interface Sci; 2015 May; 445():364-370. PubMed ID: 25643964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supramolecular hydrogel based on high-solid-content mPECT nanoparticles and cyclodextrins for local and sustained drug delivery.
    Yin L; Xu S; Feng Z; Deng H; Zhang J; Gao H; Deng L; Tang H; Dong A
    Biomater Sci; 2017 Mar; 5(4):698-706. PubMed ID: 28184404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.