These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28755617)

  • 21. Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring.
    Wang K; Yuan X; Chen J; Wang Y
    Neural Netw; 2021 Apr; 136():54-62. PubMed ID: 33445005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maximum margin semi-supervised learning with irrelevant data.
    Yang H; Huang K; King I; Lyu MR
    Neural Netw; 2015 Oct; 70():90-102. PubMed ID: 26264172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medical Inpatient Journey Modeling and Clustering: A Bayesian Hidden Markov Model Based Approach.
    Huang Z; Dong W; Wang F; Duan H
    AMIA Annu Symp Proc; 2015; 2015():649-58. PubMed ID: 26958200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating mixture modeling for clustering: recommendations and cautions.
    Steinley D; Brusco MJ
    Psychol Methods; 2011 Mar; 16(1):63-79. PubMed ID: 21319900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Handling Ill-Conditioned Omics Data With Deep Probabilistic Models.
    Martinez-Garcia M; Olmos PM
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4601-4610. PubMed ID: 37224378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Greedy learning of binary latent trees.
    Harmeling S; Williams CK
    IEEE Trans Pattern Anal Mach Intell; 2011 Jun; 33(6):1087-97. PubMed ID: 20714018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variational Bayesian mixture model on a subspace of exponential family distributions.
    Watanabe K; Akaho S; Omachi S; Okada M
    IEEE Trans Neural Netw; 2009 Nov; 20(11):1783-96. PubMed ID: 19770092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supervised Gaussian process latent variable model for dimensionality reduction.
    Gao X; Wang X; Tao D; Li X
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):425-34. PubMed ID: 20699213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seizure Classification From EEG Signals Using Transfer Learning, Semi-Supervised Learning and TSK Fuzzy System.
    Jiang Y; Wu D; Deng Z; Qian P; Wang J; Wang G; Chung FL; Choi KS; Wang S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2270-2284. PubMed ID: 28880184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic complexities of general mixture models in variational Bayesian learning.
    Watanabe K; Watanabe S
    Neural Netw; 2007 Mar; 20(2):210-9. PubMed ID: 16904288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals.
    Karklin Y; Lewicki MS
    Neural Comput; 2005 Feb; 17(2):397-423. PubMed ID: 15720773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bayesian latent variable models for hierarchical clustered count outcomes with repeated measures in microbiome studies.
    Xu L; Paterson AD; Xu W
    Genet Epidemiol; 2017 Apr; 41(3):221-232. PubMed ID: 28111783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variational learning and bits-back coding: an information-theoretic view to Bayesian learning.
    Honkela A; Valpola H
    IEEE Trans Neural Netw; 2004 Jul; 15(4):800-10. PubMed ID: 15461074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A semi-supervised learning approach for RNA secondary structure prediction.
    Yonemoto H; Asai K; Hamada M
    Comput Biol Chem; 2015 Aug; 57():72-9. PubMed ID: 25748534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian latent variable models for the analysis of experimental psychology data.
    Merkle EC; Wang T
    Psychon Bull Rev; 2018 Feb; 25(1):256-270. PubMed ID: 26993323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active Learning of Bayesian Linear Models with High-Dimensional Binary Features by Parameter Confidence-Region Estimation.
    Inatsu Y; Karasuyama M; Inoue K; Kandori H; Takeuchi I
    Neural Comput; 2020 Oct; 32(10):1998-2031. PubMed ID: 32795233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bayesian nonparametric hierarchical modeling.
    Dunson DB
    Biom J; 2009 Apr; 51(2):273-84. PubMed ID: 19358217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models.
    Xu L
    Int J Neural Syst; 2001 Feb; 11(1):43-69. PubMed ID: 11310554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supervised hierarchical Bayesian model-based electomyographic control and analysis.
    Han H; Jo S
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1214-24. PubMed ID: 24108752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.