BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 28756193)

  • 1. A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments.
    Sharma S; Floren M; Ding Y; Stenmark KR; Tan W; Bryant SJ
    Biomaterials; 2017 Oct; 143():17-28. PubMed ID: 28756193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation.
    Datar A; Joshi P; Lee MY
    Biosensors (Basel); 2015 Oct; 5(4):647-63. PubMed ID: 26516921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging photolithography and robotic protein printing to create cellular microarrays.
    Lee JY; Revzin A
    Methods Mol Biol; 2011; 671():195-206. PubMed ID: 20967631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdevice arrays with strain sensors for 3D mechanical stimulation and monitoring of engineered tissues.
    Liu H; MacQueen LA; Usprech JF; Maleki H; Sider KL; Doyle MG; Sun Y; Simmons CA
    Biomaterials; 2018 Jul; 172():30-40. PubMed ID: 29715593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput clonal analysis of neural stem cells in microarrayed artificial niches.
    Roccio M; Gobaa S; Lutolf MP
    Integr Biol (Camb); 2012 Apr; 4(4):391-400. PubMed ID: 22307554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.
    Amer LD; Holtzinger A; Keller G; Mahoney MJ; Bryant SJ
    Acta Biomater; 2015 Aug; 22():103-10. PubMed ID: 25913222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays.
    Moraes C; Wang G; Sun Y; Simmons CA
    Biomaterials; 2010 Jan; 31(3):577-84. PubMed ID: 19819010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth.
    Casey J; Yue X; Nguyen TD; Acun A; Zellmer VR; Zhang S; Zorlutuna P
    Biomed Mater; 2017 Mar; 12(2):025009. PubMed ID: 28143999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabricating gradient hydrogel scaffolds for 3D cell culture.
    Chatterjee K; Young MF; Simon CG
    Comb Chem High Throughput Screen; 2011 May; 14(4):227-36. PubMed ID: 21143178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Buildup Arrays with Orthogonal Biochemistry Gradients via Light-Induced Thiol-Ene "Click" Chemistry for High-Throughput Screening of Peptide Combinations.
    Hao H; Huang J; Liu P; Xue Y; Wang J; Jia F; Ren K; Jin Q; Ji J
    ACS Appl Mater Interfaces; 2020 May; 12(18):20243-20252. PubMed ID: 32281779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-Dimensional spatially organized PEG-based hydrogels for an aortic valve co-culture model.
    Puperi DS; Balaoing LR; O'Connell RW; West JL; Grande-Allen KJ
    Biomaterials; 2015 Oct; 67():354-64. PubMed ID: 26241755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogels with Cell Adhesion Peptide-Decorated Channel Walls for Cell Guidance.
    Wang S; Sarwat M; Wang P; Surrao DC; Harkin DG; St John JA; Bolle ECL; Forget A; Dalton PD; Dargaville TR
    Macromol Rapid Commun; 2020 Aug; 41(15):e2000295. PubMed ID: 32638470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-Instructive Microgels with Tailor-Made Physicochemical Properties.
    Allazetta S; Kolb L; Zerbib S; Bardy J; Lutolf MP
    Small; 2015 Nov; 11(42):5647-56. PubMed ID: 26349486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture.
    Worthington P; Drake KM; Li Z; Napper AD; Pochan DJ; Langhans SA
    Anal Biochem; 2017 Oct; 535():25-34. PubMed ID: 28757092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate.
    Lei KF; Liu TK; Tsang NM
    Biosens Bioelectron; 2018 Feb; 100():355-360. PubMed ID: 28946107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptable hydrogel array format for 3-dimensional cell culture and analysis.
    Jongpaiboonkit L; King WJ; Lyons GE; Paguirigan AL; Warrick JW; Beebe DJ; Murphy WL
    Biomaterials; 2008 Aug; 29(23):3346-56. PubMed ID: 18486205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.
    Ali S; Cuchiara ML; West JL
    Methods Cell Biol; 2014; 121():105-19. PubMed ID: 24560506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-assisted photolithography for spatial functionalization of hydrogels.
    Gu Z; Tang Y
    Lab Chip; 2010 Aug; 10(15):1946-51. PubMed ID: 20436969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.
    Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C
    Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.