BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 28756193)

  • 21. Transfer printing of transfected cell microarrays from poly(ethylene glycol)-oleyl surfaces onto biological hydrogels.
    Yamaguchi S; Komiya S; Matsunuma E; Yamahira S; Kihara T; Miyake J; Nagamune T
    Biotechnol Bioeng; 2013 Dec; 110(12):3269-74. PubMed ID: 23893595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.
    Henke M; Baumer J; Blunk T; Tessmar J
    J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualization of high-throughput and label-free antibody-polypeptide binding for drug screening based on microarrays and surface plasmon resonance imaging.
    Chen S; Deng T; Wang T; Wang J; Li X; Li Q; Huang G
    J Biomed Opt; 2012 Jan; 17(1):015005. PubMed ID: 22352649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-phase, surface tension-based fabrication method for generation of tumor millibeads.
    Pradhan S; Chaudhury CS; Lipke EA
    Langmuir; 2014 Apr; 30(13):3817-25. PubMed ID: 24617794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays.
    Yu KN; Nadanaciva S; Rana P; Lee DW; Ku B; Roth AD; Dordick JS; Will Y; Lee MY
    Arch Toxicol; 2018 Mar; 92(3):1295-1310. PubMed ID: 29167929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional polymer materials affecting cell attachment.
    Jiang B; Yang J; Rahoui N; Taloub N; Huang YD
    Adv Colloid Interface Sci; 2017 Dec; 250():185-194. PubMed ID: 28950985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterning of cell-instructive hydrogels by hydrodynamic flow focusing.
    Cosson S; Allazetta S; Lutolf MP
    Lab Chip; 2013 Jun; 13(11):2099-105. PubMed ID: 23598796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptide microarray patterning for controlling and monitoring cell growth.
    Lin E; Sikand A; Wickware J; Hao Y; Derda R
    Acta Biomater; 2016 Apr; 34():53-59. PubMed ID: 26805426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled release of drugs from gradient hydrogels for high-throughput analysis of cell-drug interactions.
    Ostrovidov S; Annabi N; Seidi A; Ramalingam M; Dehghani F; Kaji H; Khademhosseini A
    Anal Chem; 2012 Feb; 84(3):1302-9. PubMed ID: 22220576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific peptide immobilization strategies for the rapid detection of kinase activity on microarrays.
    Uttamchandani M; Chen GY; Lesaicherre ML; Yao SQ
    Methods Mol Biol; 2004; 264():191-204. PubMed ID: 15020791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Throughput Assessment of Mechanistic Toxicity of Chemicals in Miniaturized 3D Cell Culture.
    Joshi P; Kang SY; Datar A; Lee MY
    Curr Protoc Toxicol; 2019 Feb; 79(1):e66. PubMed ID: 30387930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryopreservation of cell-containing poly(ethylene) glycol hydrogel microarrays.
    Itle LJ; Pishko MV
    Biotechnol Prog; 2005; 21(3):1004-7. PubMed ID: 15932288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogel-Based In Vitro Models of Tumor Angiogenesis.
    Bray LJ; Binner M; Freudenberg U; Werner C
    Methods Mol Biol; 2017; 1612():39-63. PubMed ID: 28634934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioactive hydrogel substrates: probing leukocyte receptor-ligand interactions in parallel plate flow chamber studies.
    Taite LJ; Rowland ML; Ruffino KA; Smith BR; Lawrence MB; West JL
    Ann Biomed Eng; 2006 Nov; 34(11):1705-11. PubMed ID: 17031598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of 3D hydrogel culture systems with on-demand cell separation.
    Hamilton SK; Bloodworth NC; Massad CS; Hammoudi TM; Suri S; Yang PJ; Lu H; Temenoff JS
    Biotechnol J; 2013 Apr; 8(4):485-95. PubMed ID: 23447378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation.
    Dong D; Li J; Cui M; Wang J; Zhou Y; Luo L; Wei Y; Ye L; Sun H; Yao F
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4442-55. PubMed ID: 26817499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(2-oxazoline) hydrogels as next generation three-dimensional cell supports.
    Dargaville TR; Hollier BG; Shokoohmand A; Hoogenboom R
    Cell Adh Migr; 2014; 8(2):88-93. PubMed ID: 24714592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioprinting of 3D hydrogels.
    Stanton MM; Samitier J; Sánchez S
    Lab Chip; 2015 Aug; 15(15):3111-5. PubMed ID: 26066320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of bioactive photocrosslinkable fibrous hydrogels.
    Stephens-Altus JS; Sundelacruz P; Rowland ML; West JL
    J Biomed Mater Res A; 2011 Aug; 98(2):167-76. PubMed ID: 21548066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.