These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 28756282)
41. Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity. Zhang L; He ZY; Zhang YQ; Jiang YH; Zhou R Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():104-114. PubMed ID: 27287104 [TBL] [Abstract][Full Text] [Related]
42. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus. Bai Y; Deng Y; Zheng Y; Li Y; Zhang R; Lv Y; Zhao Q; Wei S Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():565-576. PubMed ID: 26652409 [TBL] [Abstract][Full Text] [Related]
43. Comparative corrosion study of Ti-Ta alloys for dental applications. Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903 [TBL] [Abstract][Full Text] [Related]
44. Effect of composition on in vitro degradability of Ti-Mg metal-metal composites. Ouyang S; Liu Y; Huang Q; Gan Z; Tang H Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110327. PubMed ID: 31761167 [TBL] [Abstract][Full Text] [Related]
45. Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid. Saud SN; Hosseinian S R; Bakhsheshi-Rad HR; Yaghoubidoust F; Iqbal N; Hamzah E; Ooi CHR Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():687-694. PubMed ID: 27524069 [TBL] [Abstract][Full Text] [Related]
46. Titanium-hydroxyapatite composites sintered at low temperature for tissue engineering: in vitro cell support and biocompatibility. Comín R; Cid MP; Grinschpun L; Oldani C; Salvatierra NA J Appl Biomater Funct Mater; 2017 Apr; 15(2):e176-e183. PubMed ID: 28222206 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy. Bolzoni L; Ruiz-Navas EM; Gordo E J Mech Behav Biomed Mater; 2017 Mar; 67():110-116. PubMed ID: 27988440 [TBL] [Abstract][Full Text] [Related]
48. Characterization of hydroxyapatite containing a titania layer formed by anodization coupled with blasting. Kang MK; Moon SK; Kwon JS; Kim KM; Kim KN Acta Odontol Scand; 2014 Nov; 72(8):989-98. PubMed ID: 25005626 [TBL] [Abstract][Full Text] [Related]
49. Comparison of titanium-tantalum and titanium-niobium alloys for application as dental implants. Breme J; Wadewitz V Int J Oral Maxillofac Implants; 1989; 4(2):113-8. PubMed ID: 2599582 [TBL] [Abstract][Full Text] [Related]
50. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Chen M; Zhang E; Zhang L Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433 [TBL] [Abstract][Full Text] [Related]
51. Development and properties of Ti-In binary alloys as dental biomaterials. Wang QY; Wang YB; Lin JP; Zheng YF Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1601-6. PubMed ID: 23827613 [TBL] [Abstract][Full Text] [Related]
52. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications. Souza ME; Lima L; Lima CR; Zavaglia CA; Freire CM J Mater Sci Mater Med; 2009 Feb; 20(2):549-52. PubMed ID: 18987951 [TBL] [Abstract][Full Text] [Related]
53. Addition of Sn to TiNb alloys to improve mechanical performance and surface properties conducive to enhanced cell activity. Torres-Sánchez C; Wang J; Norrito M; Zani L; Conway PP Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():110839. PubMed ID: 32600675 [TBL] [Abstract][Full Text] [Related]
54. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water. Tanaka H; Mori Y; Noro A; Kogure A; Kamimura M; Yamada N; Hanada S; Masahashi N; Itoi E PLoS One; 2016; 11(2):e0150081. PubMed ID: 26914329 [TBL] [Abstract][Full Text] [Related]
55. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. Samuel S; Nag S; Nasrazadani S; Ukirde V; El Bouanani M; Mohandas A; Nguyen K; Banerjee R J Biomed Mater Res A; 2010 Sep; 94(4):1251-6. PubMed ID: 20694992 [TBL] [Abstract][Full Text] [Related]
56. ZrO(2)/hydroxyapatite coating on titanium by electrolytic deposition. Hsu HC; Wu SC; Yang CH; Ho WF J Mater Sci Mater Med; 2009 Feb; 20(2):615-9. PubMed ID: 18853237 [TBL] [Abstract][Full Text] [Related]
57. Corrosion of Al Bahraminasab M; Bozorg M; Ghaffari S; Kavakebian F Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():200-211. PubMed ID: 31146991 [TBL] [Abstract][Full Text] [Related]
58. Fabrication and characterization of Ti-12Mo/xAl Yehia HM; El-Tantawy A; Elkady OA; Ghayad IM; Daoush WM Front Bioeng Biotechnol; 2024; 12():1412586. PubMed ID: 39081331 [No Abstract] [Full Text] [Related]
59. Direct bioactive ceramics coating via reactive Growing Integration Layer method on α-Ti-alloy. Huang CH; Chen RS; Yoshimura M Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1216-1223. PubMed ID: 28482488 [TBL] [Abstract][Full Text] [Related]
60. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper. Rafieerad AR; Ashra MR; Mahmoodian R; Bushroa AR Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():397-413. PubMed ID: 26354281 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]