BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28756660)

  • 1. Spectroscopy and DFT Calculations of a Flavo-diiron Enzyme Implicate New Diiron Site Structures.
    Weitz AC; Giri N; Caranto JD; Kurtz DM; Bominaar EL; Hendrich MP
    J Am Chem Soc; 2017 Aug; 139(34):12009-12019. PubMed ID: 28756660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopy and DFT Calculations of Flavo-Diiron Nitric Oxide Reductase Identify Bridging Structures of NO-Coordinated Diiron Intermediates.
    Weitz AC; Giri N; Frederick RE; Kurtz DM; Bominaar EL; Hendrich MP
    ACS Catal; 2018 Dec; 8(12):11704-11715. PubMed ID: 31263628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nitric oxide reductase mechanism of a flavo-diiron protein: identification of active-site intermediates and products.
    Caranto JD; Weitz A; Hendrich MP; Kurtz DM
    J Am Chem Soc; 2014 Jun; 136(22):7981-92. PubMed ID: 24828196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A diferrous-dinitrosyl intermediate in the N2O-generating pathway of a deflavinated flavo-diiron protein.
    Caranto JD; Weitz A; Giri N; Hendrich MP; Kurtz DM
    Biochemistry; 2014 Sep; 53(35):5631-7. PubMed ID: 25144650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the nitric oxide reductase mechanism of flavodiiron proteins from a flavin-free enzyme.
    Hayashi T; Caranto JD; Wampler DA; Kurtz DM; Moënne-Loccoz P
    Biochemistry; 2010 Aug; 49(33):7040-9. PubMed ID: 20669924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine ligand variants of a flavo-diiron protein: effects on structure and activities.
    Fang H; Caranto JD; Mendoza R; Taylor AB; Hart PJ; Kurtz DM
    J Biol Inorg Chem; 2012 Dec; 17(8):1231-9. PubMed ID: 22990880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural, EPR, and Mössbauer characterization of (μ-alkoxo)(μ-carboxylato)diiron(II,III) model complexes for the active sites of mixed-valent diiron enzymes.
    Li F; Chakrabarti M; Dong Y; Kauffmann K; Bominaar EL; Münck E; Que L
    Inorg Chem; 2012 Mar; 51(5):2917-29. PubMed ID: 22360600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of substrate on the diiron(III) site in stearoyl acyl carrier protein delta 9-desaturase as disclosed by cryoreduction electron paramagnetic resonance/electron nuclear double resonance spectroscopy.
    Davydov R; Behrouzian B; Smoukov S; Stubbe J; Hoffman BM; Shanklin J
    Biochemistry; 2005 Feb; 44(4):1309-15. PubMed ID: 15667224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxygen and nitric oxide scavenging by Treponema denticola flavodiiron protein: a mechanistic paradigm for catalysis.
    Frederick RE; Caranto JD; Masitas CA; Gebhardt LL; MacGowan CE; Limberger RJ; Kurtz DM
    J Biol Inorg Chem; 2015 Apr; 20(3):603-13. PubMed ID: 25700637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins.
    Fox BG; Shanklin J; Ai J; Loehr TM; Sanders-Loehr J
    Biochemistry; 1994 Nov; 33(43):12776-86. PubMed ID: 7947683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    Biochemistry; 2004 Mar; 43(11):3204-13. PubMed ID: 15023070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Am Chem Soc; 2002 Aug; 124(33):9845-55. PubMed ID: 12175244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray crystal structures of Moorella thermoacetica FprA. Novel diiron site structure and mechanistic insights into a scavenging nitric oxide reductase.
    Silaghi-Dumitrescu R; Kurtz DM; Ljungdahl LG; Lanzilotta WN
    Biochemistry; 2005 May; 44(17):6492-501. PubMed ID: 15850383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of NO with the reduced R2 protein of ribonucleotide reductase from Escherichia coli.
    Haskin CJ; Ravi N; Lynch JB; Münck E; Que L
    Biochemistry; 1995 Sep; 34(35):11090-8. PubMed ID: 7669766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III).
    Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L
    Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR and ENDOR evidence for a 1-His, hydroxo-bridged mixed-valent diiron site in Desulfovibrio vulgaris rubrerythrin.
    Smoukov SK; Davydov RM; Doan PE; Sturgeon B; Kung IY; Hoffman BM; Kurtz DM
    Biochemistry; 2003 May; 42(20):6201-8. PubMed ID: 12755623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and spectroscopic studies of non-heme diiron(III) species with a terminal hydroperoxide ligand: models for hemerythrin.
    Mizoguchi TJ; Kuzelka J; Spingler B; DuBois JL; Davydov RM; Hedman B; Hodgson KO; Lippard SJ
    Inorg Chem; 2001 Aug; 40(18):4662-73. PubMed ID: 11511213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of Nitric Oxide Reduction Activity in Flavo-Diiron NO Reductase: Key Roles of the Second Coordination Sphere.
    Lu J; Bi B; Lai W; Chen H
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):3795-3799. PubMed ID: 30697895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mössbauer properties of the diferric cluster and the differential iron(II)-binding affinity of the iron sites in protein R2 of class Ia Escherichia coli ribonucleotide reductase: a DFT/electrostatics study.
    Han WG; Sandala GM; Giammona DA; Bashford D; Noodleman L
    Dalton Trans; 2011 Nov; 40(42):11164-75. PubMed ID: 21837345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.