BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28756704)

  • 1. Implementation of Resonance Tracking for Assuring Reliability in Resonance Enhanced Photothermal Infrared Spectroscopy and Imaging.
    Ramer G; Reisenbauer F; Steindl B; Tomischko W; Lendl B
    Appl Spectrosc; 2017 Aug; 71(8):2013-2020. PubMed ID: 28756704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and Controlling Spatial Resolution, Sensitivity, and Surface Selectivity in Resonant-Mode Photothermal-Induced Resonance Spectroscopy.
    Quaroni L
    Anal Chem; 2020 Mar; 92(5):3544-3554. PubMed ID: 32023046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baking releases microplastics from polyethylene terephthalate bakeware as detected by optical photothermal infrared and quantum cascade laser infrared.
    Lin X; Gowen AA; Chen S; Xu JL
    Sci Total Environ; 2024 May; 924():171408. PubMed ID: 38432360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging.
    Quaroni L
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique.
    Lahiri B; Holland G; Centrone A
    Small; 2013 Feb; 9(3):439-45. PubMed ID: 23034929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles.
    Olson NE; Xiao Y; Lei Z; Ault AP
    Anal Chem; 2020 Jul; 92(14):9932-9939. PubMed ID: 32519841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab on a tip: atomic force microscopy - photothermal infrared spectroscopy of atmospherically relevant organic/inorganic aerosol particles in the nanometer to micrometer size range.
    Or VW; Estillore AD; Tivanski AV; Grassian VH
    Analyst; 2018 Jun; 143(12):2765-2774. PubMed ID: 29675539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy.
    Schwartz JJ; Pavlidis G; Centrone A
    Anal Chem; 2022 Sep; 94(38):13126-13135. PubMed ID: 36099442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting the Surface-Enhanced IR Absorption Effect in the Photothermally Induced Resonance AFM-IR Technique toward Nanoscale Chemical Analysis.
    Wang CT; Jiang B; Zhou YW; Jiang TW; Liu JH; Zhu GD; Cai WB
    Anal Chem; 2019 Aug; 91(16):10541-10548. PubMed ID: 31313574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.
    Donaldson PM; Kelley CS; Frogley MD; Filik J; Wehbe K; Cinque G
    Opt Express; 2016 Feb; 24(3):1852-64. PubMed ID: 26906764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Chemical Analysis at the Nanoscale Using the Photothermal Induced Resonance Technique.
    Ramer G; Aksyuk VA; Centrone A
    Anal Chem; 2017 Dec; 89(24):13524-13531. PubMed ID: 29165992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution.
    Katzenmeyer AM; Holland G; Kjoller K; Centrone A
    Anal Chem; 2015 Mar; 87(6):3154-9. PubMed ID: 25707296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals.
    Harrison AJ; Bilgili EA; Beaudoin SP; Taylor LS
    Anal Chem; 2013 Dec; 85(23):11449-55. PubMed ID: 24171582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).
    Prater CB; Kjoller KJ; Stuart APD; Grigg DA; 'Limurn R; Gough KM
    Appl Spectrosc; 2024 May; ():37028241256978. PubMed ID: 38803165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales.
    Muller EA; Pollard B; Raschke MB
    J Phys Chem Lett; 2015 Apr; 6(7):1275-84. PubMed ID: 26262987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap-Plasmon-Enhanced High-Spatial-Resolution Imaging by Photothermal-Induced Resonance in the Visible Range.
    Zhou J; Smirnov A; Dietler G; Sekatskii SK
    Nano Lett; 2019 Nov; 19(11):8278-8286. PubMed ID: 31650844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging and spectroscopy of domains of the cellular membrane by photothermal-induced resonance.
    Quaroni L
    Analyst; 2020 Aug; 145(17):5940-5950. PubMed ID: 32706007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.