BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 28757092)

  • 1. Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture.
    Worthington P; Drake KM; Li Z; Napper AD; Pochan DJ; Langhans SA
    Anal Biochem; 2017 Oct; 535():25-34. PubMed ID: 28757092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures.
    Worthington P; Drake KM; Li Z; Napper AD; Pochan DJ; Langhans SA
    SLAS Discov; 2019 Aug; 24(7):714-723. PubMed ID: 31039326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofunctional supramolecular hydrogels fabricated from a short self-assembling peptide modified with bioactive sequences for the 3D culture of breast cancer MCF-7 cells.
    Chia JY; Miki T; Mihara H; Tsutsumi H
    Bioorg Med Chem; 2021 Sep; 46():116345. PubMed ID: 34416510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Hydrogel Cultures for High-Throughput Drug Discovery.
    Sperle K; Pochan DJ; Langhans SA
    Methods Mol Biol; 2023; 2614():369-381. PubMed ID: 36587136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained release of active chemotherapeutics from injectable-solid β-hairpin peptide hydrogel.
    Sun JE; Stewart B; Litan A; Lee SJ; Schneider JP; Langhans SA; Pochan DJ
    Biomater Sci; 2016 May; 4(5):839-48. PubMed ID: 26906463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conjugates of forky peptides and nonsteroidal anti-inflammatory drugs (NSAID) self-assemble into supramolecular hydrogels for prostate cancer-specific drug delivery.
    Tao M; He S; Liu J; Li H; Mei L; Wu C; Xu K; Zhong W
    J Mater Chem B; 2019 Jan; 7(3):469-476. PubMed ID: 32254734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials.
    Song H; Cai GH; Liang J; Ao DS; Wang H; Yang ZH
    J Nanobiotechnology; 2020 Jun; 18(1):90. PubMed ID: 32527266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature responsive hydrogels enable transient three-dimensional tumor cultures via rapid cell recovery.
    Heffernan JM; Overstreet DJ; Srinivasan S; Le LD; Vernon BL; Sirianni RW
    J Biomed Mater Res A; 2016 Jan; 104(1):17-25. PubMed ID: 26123863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The production of 3D tumor spheroids for cancer drug discovery.
    Sant S; Johnston PA
    Drug Discov Today Technol; 2017 Mar; 23():27-36. PubMed ID: 28647083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice.
    Ruedinger F; Lavrentieva A; Blume C; Pepelanova I; Scheper T
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):623-36. PubMed ID: 25432676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Generation of Three-Dimensional Head and Neck Cancer Models for Drug Discovery in 384-Well Ultra-Low Attachment Microplates.
    Close DA; Camarco DP; Shan F; Kochanek SJ; Johnston PA
    Methods Mol Biol; 2018; 1683():355-369. PubMed ID: 29082502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate.
    Lei KF; Liu TK; Tsang NM
    Biosens Bioelectron; 2018 Feb; 100():355-360. PubMed ID: 28946107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 3D matrix compositions on the efficacy of EGFR inhibition in pancreatic ductal adenocarcinoma cells.
    Ki CS; Shih H; Lin CC
    Biomacromolecules; 2013 Sep; 14(9):3017-26. PubMed ID: 23889305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automatable Hydrogel Culture Platform for Evaluating Efficacy of Antibody-Based Therapeutics in Overcoming Chemoresistance.
    Kletzmayr A; Clement Frey F; Zimmermann M; Eberli D; Millan C
    Biotechnol J; 2020 May; 15(5):e1900439. PubMed ID: 32028540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.
    Huang H; Ding Y; Sun XS; Nguyen TA
    PLoS One; 2013; 8(3):e59482. PubMed ID: 23527204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation.
    Jeong MH; Kim I; Park K; Ku B; Lee DW; Park KR; Jeon SY; Kim JE
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automation of 3D cell culture using chemically defined hydrogels.
    Rimann M; Angres B; Patocchi-Tenzer I; Braum S; Graf-Hausner U
    J Lab Autom; 2014 Apr; 19(2):191-7. PubMed ID: 24132162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation.
    Datar A; Joshi P; Lee MY
    Biosensors (Basel); 2015 Oct; 5(4):647-63. PubMed ID: 26516921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.