BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28757166)

  • 1. p53 Mediates Failure of Human Definitive Hematopoiesis in Dyskeratosis Congenita.
    Fok WC; Niero ELO; Dege C; Brenner KA; Sturgeon CM; Batista LFZ
    Stem Cell Reports; 2017 Aug; 9(2):409-418. PubMed ID: 28757166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and Management of Hematopoietic Failure in Dyskeratosis Congenita.
    Agarwal S
    Hematol Oncol Clin North Am; 2018 Aug; 32(4):669-685. PubMed ID: 30047419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional TRF1 knockout in the hematopoietic compartment leads to bone marrow failure and recapitulates clinical features of dyskeratosis congenita.
    Beier F; Foronda M; Martinez P; Blasco MA
    Blood; 2012 Oct; 120(15):2990-3000. PubMed ID: 22932806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A zebrafish model of dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from ribosomal protein-mediated p53 stabilization.
    Pereboom TC; van Weele LJ; Bondt A; MacInnes AW
    Blood; 2011 Nov; 118(20):5458-65. PubMed ID: 21921046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Telomere length in inherited bone marrow failure syndromes.
    Alter BP; Giri N; Savage SA; Rosenberg PS
    Haematologica; 2015 Jan; 100(1):49-54. PubMed ID: 25304614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Telomere dynamics and hematopoietic differentiation of human DKC1-mutant induced pluripotent stem cells.
    Donaires FS; Alves-Paiva RM; Gutierrez-Rodrigues F; da Silva FB; Tellechea MF; Moreira LF; Santana BA; Traina F; Dunbar CE; Winkler T; Calado RT
    Stem Cell Res; 2019 Oct; 40():101540. PubMed ID: 31479877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 pathway activation by telomere attrition in X-DC primary fibroblasts occurs in the absence of ribosome biogenesis failure and as a consequence of DNA damage.
    Carrillo J; González A; Manguán-García C; Pintado-Berninches L; Perona R
    Clin Transl Oncol; 2014 Jun; 16(6):529-38. PubMed ID: 24065372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders.
    Balakumaran A; Mishra PJ; Pawelczyk E; Yoshizawa S; Sworder BJ; Cherman N; Kuznetsov SA; Bianco P; Giri N; Savage SA; Merlino G; Dumitriu B; Dunbar CE; Young NS; Alter BP; Robey PG
    Blood; 2015 Jan; 125(5):793-802. PubMed ID: 25499762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease modeling of bone marrow failure syndromes using iPSC-derived hematopoietic stem progenitor cells.
    Elbadry MI; Espinoza JL; Nakao S
    Exp Hematol; 2019 Mar; 71():32-42. PubMed ID: 30664904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of primitive hematopoietic cells from patients with dyskeratosis congenita.
    Goldman FD; Aubert G; Klingelhutz AJ; Hills M; Cooper SR; Hamilton WS; Schlueter AJ; Lambie K; Eaves CJ; Lansdorp PM
    Blood; 2008 May; 111(9):4523-31. PubMed ID: 18310499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A TIN2 dyskeratosis congenita mutation causes telomerase-independent telomere shortening in mice.
    Frescas D; de Lange T
    Genes Dev; 2014 Jan; 28(2):153-66. PubMed ID: 24449270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of dyskeratosis congenita-like hematopoietic stem cells through the stable inhibition of DKC1.
    Carrascoso-Rubio C; Zittersteijn HA; Pintado-Berninches L; Fernández-Varas B; Lozano ML; Manguan-Garcia C; Sastre L; Bueren JA; Perona R; Guenechea G
    Stem Cell Res Ther; 2021 Jan; 12(1):92. PubMed ID: 33514435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Telomere restoration and extension of proliferative lifespan in dyskeratosis congenita fibroblasts.
    Westin ER; Chavez E; Lee KM; Gourronc FA; Riley S; Lansdorp PM; Goldman FD; Klingelhutz AJ
    Aging Cell; 2007 Jun; 6(3):383-94. PubMed ID: 17381549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dyskeratosis congenita, stem cells and telomeres.
    Kirwan M; Dokal I
    Biochim Biophys Acta; 2009 Apr; 1792(4):371-9. PubMed ID: 19419704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation.
    Cypris O; Eipel M; Franzen J; Rösseler C; Tharmapalan V; Kuo CC; Vieri M; Nikolić M; Kirschner M; Brümmendorf TH; Zenke M; Lampert A; Beier F; Wagner W
    Clin Epigenetics; 2020 Aug; 12(1):125. PubMed ID: 32819411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomeres and marrow failure.
    Calado RT
    Hematology Am Soc Hematol Educ Program; 2009; ():338-43. PubMed ID: 20008219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking Gene Fusions to Bone Marrow Failure and Malignant Transformation in Dyskeratosis Congenita.
    Güllülü Ö; Mayer BE; Toplek FB
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The shelterin complex and hematopoiesis.
    Jones M; Bisht K; Savage SA; Nandakumar J; Keegan CE; Maillard I
    J Clin Invest; 2016 May; 126(5):1621-9. PubMed ID: 27135879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone marrow failure and the new telomere diseases: practice and research.
    Young NS
    Hematology; 2012 Apr; 17 Suppl 1():S18-21. PubMed ID: 22507770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posttranscriptional modulation of TERC by PAPD5 inhibition rescues hematopoietic development in dyskeratosis congenita.
    Fok WC; Shukla S; Vessoni AT; Brenner KA; Parker R; Sturgeon CM; Batista LFZ
    Blood; 2019 Mar; 133(12):1308-1312. PubMed ID: 30728146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.