These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 28757170)

  • 41. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma.
    Coulouarn C; Clément B
    J Hepatol; 2014 Jun; 60(6):1306-9. PubMed ID: 24530649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.
    Okamoto K; Tajima H; Nakanuma S; Sakai S; Makino I; Kinoshita J; Hayashi H; Nakamura K; Oyama K; Nakagawara H; Fujita H; Takamura H; Ninomiya I; Kitagawa H; Fushida S; Fujimura T; Harada S; Wakayama T; Iseki S; Ohta T
    Int J Oncol; 2012 Aug; 41(2):573-82. PubMed ID: 22664794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Role of Stroma in Cholangiocarcinoma: The Intriguing Interplay between Fibroblastic Component, Immune Cell Subsets and Tumor Epithelium.
    Gentilini A; Pastore M; Marra F; Raggi C
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30249019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Local balance of transforming growth factor-beta1 secreted from cholangiocarcinoma cells and stromal-derived factor-1 secreted from stromal fibroblasts is a factor involved in invasion of cholangiocarcinoma.
    Ohira S; Itatsu K; Sasaki M; Harada K; Sato Y; Zen Y; Ishikawa A; Oda K; Nagasaka T; Nimura Y; Nakanuma Y
    Pathol Int; 2006 Jul; 56(7):381-9. PubMed ID: 16792547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hypoxia enhances cholangiocarcinoma invasion through activation of hepatocyte growth factor receptor and the extracellular signal‑regulated kinase signaling pathway.
    Vanichapol T; Leelawat K; Hongeng S
    Mol Med Rep; 2015 Sep; 12(3):3265-3272. PubMed ID: 26018028
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Tumor-stroma interactions].
    Billottet C; Jouanneau J
    Bull Cancer; 2008 Jan; 95(1):51-6. PubMed ID: 18230570
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modern views on the role of main components of stroma and tumor microinvironment in invasion, migration and metastasis.
    Naleskina LA; Kunska LM; Chekhun VF
    Exp Oncol; 2020 Dec; 42(4):252-262. PubMed ID: 33355867
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ASO Author Reflections: Clinical Significance of PD-L1 Expression in Both Cancer and Stroma Cells in Cholangiocarcinoma Patients.
    Kitano Y; Baba H
    Ann Surg Oncol; 2020 Feb; 27(2):608-609. PubMed ID: 31691113
    [No Abstract]   [Full Text] [Related]  

  • 49. How the biliary tree maintains immune tolerance?
    Zhang H; Leung PSC; Gershwin ME; Ma X
    Biochim Biophys Acta Mol Basis Dis; 2018 Apr; 1864(4 Pt B):1367-1373. PubMed ID: 28844953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression.
    Giussani M; Merlino G; Cappelletti V; Tagliabue E; Daidone MG
    Semin Cancer Biol; 2015 Dec; 35():3-10. PubMed ID: 26416466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Epithelial-to-Mesenchymal Transition and Cancer Invasiveness: What Can We Learn from Cholangiocarcinoma?
    Brivio S; Cadamuro M; Fabris L; Strazzabosco M
    J Clin Med; 2015 Dec; 4(12):2028-41. PubMed ID: 26703747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice.
    Farazi PA; Zeisberg M; Glickman J; Zhang Y; Kalluri R; DePinho RA
    Cancer Res; 2006 Jul; 66(13):6622-7. PubMed ID: 16818635
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Liver Matrix in Benign and Malignant Biliary Tract Disease.
    Fabris L; Cadamuro M; Cagnin S; Strazzabosco M; Gores GJ
    Semin Liver Dis; 2020 Aug; 40(3):282-297. PubMed ID: 32162285
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells.
    Mueller MM; Fusenig NE
    Differentiation; 2002 Dec; 70(9-10):486-97. PubMed ID: 12492491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arousal of cancer-associated stromal fibroblasts: palladin-activated fibroblasts promote tumor invasion.
    Brentnall TA
    Cell Adh Migr; 2012; 6(6):488-94. PubMed ID: 23076142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tumor stroma and regulation of cancer development.
    Tlsty TD; Coussens LM
    Annu Rev Pathol; 2006; 1():119-50. PubMed ID: 18039110
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring the function of stromal cells in cholangiocarcinoma by three-dimensional bioprinting immune microenvironment model.
    Li C; Jin B; Sun H; Wang Y; Zhao H; Sang X; Yang H; Mao Y
    Front Immunol; 2022; 13():941289. PubMed ID: 35983036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-mobility group box 1 expression and lymph node metastasis in intrahepatic cholangiocarcinoma.
    Xu YF; Ge FJ; Han B; Yang XQ; Su H; Zhao AC; Zhao MH; Yang YB; Yang J
    World J Gastroenterol; 2015 Mar; 21(11):3256-65. PubMed ID: 25805932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Periostin in intrahepatic cholangiocarcinoma: pathobiological insights and clinical implications.
    Sirica AE; Almenara JA; Li C
    Exp Mol Pathol; 2014 Dec; 97(3):515-24. PubMed ID: 25446840
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.
    Sasaki M; Nakanuma Y
    Expert Rev Gastroenterol Hepatol; 2016; 10(5):625-38. PubMed ID: 26680649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.