BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28757200)

  • 21. Silver nanoparticles inhibit the gill Na⁺/K⁺-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio).
    Katuli KK; Massarsky A; Hadadi A; Pourmehran Z
    Ecotoxicol Environ Saf; 2014 Aug; 106():173-80. PubMed ID: 24840880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities.
    Al-Shmgani HSA; Mohammed WH; Sulaiman GM; Saadoon AH
    Artif Cells Nanomed Biotechnol; 2017 Sep; 45(6):1-7. PubMed ID: 27534756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silver nanoparticles affect the neural development of zebrafish embryos.
    Xin Q; Rotchell JM; Cheng J; Yi J; Zhang Q
    J Appl Toxicol; 2015 Dec; 35(12):1481-92. PubMed ID: 25976698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topical silver nanoparticles reduced with ethylcellulose enhance skin wound healing.
    Abdellatif AAH; Alhumaydhi FA; Al Rugaie O; Tolba NS; Mousa AM
    Eur Rev Med Pharmacol Sci; 2023 Jan; 27(2):744-754. PubMed ID: 36734730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sex-dependent and organ-specific toxicity of silver nanoparticles in livers and intestines of adult zebrafish.
    Bao S; Tang W; Fang T
    Chemosphere; 2020 Jun; 249():126172. PubMed ID: 32078855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Antioxidant and In Vitro Wound Healing Activity of
    Tyavambiza C; Meyer M; Wusu AD; Madiehe AM; Meyer S
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel Asymmetric Wettable AgNPs/Chitosan Wound Dressing: In Vitro and In Vivo Evaluation.
    Liang D; Lu Z; Yang H; Gao J; Chen R
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3958-68. PubMed ID: 26800283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the effects of silver nanoparticles on Danio rerio cornea: Morphological and ultrastructural analysis.
    Pecoraro R; Salvaggio A; Scalisi EM; Iaria C; Lanteri G; Copat C; Ferrante M; Fragalà G; Zimbone M; Impellizzeri G; Brundo MV
    Microsc Res Tech; 2019 Aug; 82(8):1297-1301. PubMed ID: 31044488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico modeling of the antagonistic effect of mercuric chloride and silver nanoparticles on the mortality rate of zebrafish (Danio rerio) based on response surface methodology.
    Esmaeilbeigi M; Behzadi Tayemeh M; Johari SA; Ghorbani F; Sourinejad I; Yu IJ
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):54733-54744. PubMed ID: 35306655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.
    Christen V; Capelle M; Fent K
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentially transcriptional regulation on cell cycle pathway by silver nanoparticles from ionic silver in larval zebrafish (Danio rerio).
    Kang JS; Bong J; Choi JS; Henry TB; Park JW
    Biochem Biophys Res Commun; 2016 Oct; 479(4):753-758. PubMed ID: 27693782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development.
    Massarsky A; Dupuis L; Taylor J; Eisa-Beygi S; Strek L; Trudeau VL; Moon TW
    Chemosphere; 2013 Jun; 92(1):59-66. PubMed ID: 23548591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Effects of Seven-Day Exposure to Silver Nanoparticles on Fertility and Homeostasis of Zebrafish (
    Szudrowicz H; Kamaszewski M; Adamski A; Skrobisz M; Frankowska-Łukawska J; Wójcik M; Bochenek J; Kawalski K; Martynow J; Bujarski P; Pruchniak P; Latoszek E; Bury-Burzymski P; Szczepański A; Jaworski S; Matuszewski A; Herman AP
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application.
    GhavamiNejad A; Rajan Unnithan A; Ramachandra Kurup Sasikala A; Samarikhalaj M; Thomas RG; Jeong YY; Nasseri S; Murugesan P; Wu D; Hee Park C; Kim CS
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12176-83. PubMed ID: 25989513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).
    Schmidt JG; Andersen EW; Ersbøll BK; Nielsen ME
    Fish Shellfish Immunol; 2016 Jan; 48():273-84. PubMed ID: 26702558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.
    Moura LI; Dias AM; Suesca E; Casadiegos S; Leal EC; Fontanilla MR; Carvalho L; de Sousa HC; Carvalho E
    Biochim Biophys Acta; 2014 Jan; 1842(1):32-43. PubMed ID: 24161538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms.
    Ottoni CA; Lima Neto MC; Léo P; Ortolan BD; Barbieri E; De Souza AO
    Chemosphere; 2020 Jan; 239():124698. PubMed ID: 31493753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytotoxicity of lycopene-mediated silver nanoparticles in the embryonic development of zebrafish-An animal study.
    Garapati B; Malaiappan S; Rajeshkumar S; Murthykumar K
    J Biochem Mol Toxicol; 2022 Oct; 36(10):e23173. PubMed ID: 35822638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds.
    Sood R; Chopra DS
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():575-589. PubMed ID: 30184784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing.
    Zhang K; Lui VCH; Chen Y; Lok CN; Wong KKY
    Sci Rep; 2020 Apr; 10(1):6338. PubMed ID: 32286492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.