These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
556 related articles for article (PubMed ID: 28757233)
41. The dynamics of cognitive control: evidence for within-trial conflict adaptation from frequency-tagged EEG. Scherbaum S; Fischer R; Dshemuchadse M; Goschke T Psychophysiology; 2011 May; 48(5):591-600. PubMed ID: 21044093 [TBL] [Abstract][Full Text] [Related]
42. Dorsolateral pFC and the representation of the incorrect use of an object: the transcranial direct current stimulation effect on N400 for visual and linguistic stimuli. Balconi M; Vitaloni S J Cogn Neurosci; 2014 Feb; 26(2):305-18. PubMed ID: 24144247 [TBL] [Abstract][Full Text] [Related]
43. The Basal Ganglia Striosomes Affect the Modulation of Conflicts by Subliminal Information-Evidence from X-Linked Dystonia Parkinsonism. Beste C; Mückschel M; Rosales R; Domingo A; Lee L; Ng A; Klein C; Münchau A Cereb Cortex; 2018 Jul; 28(7):2243-2252. PubMed ID: 28505262 [TBL] [Abstract][Full Text] [Related]
44. When cognitive control is calibrated: event-related potential correlates of adapting to information-processing conflict despite erroneous response preparation. Freitas AL; Banai R; Clark SL Psychophysiology; 2009 Nov; 46(6):1226-33. PubMed ID: 19572903 [TBL] [Abstract][Full Text] [Related]
45. Role of the left DLPFC in endogenous task preparation: experimental repetitive transcranial magnetic stimulation study. Vanderhasselt MA; De Raedt R; Leyman L; Baeken C Neuropsychobiology; 2010; 61(3):162-8. PubMed ID: 20173354 [TBL] [Abstract][Full Text] [Related]
46. Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict. Chun JW; Park HJ; Kim DJ; Kim E; Kim JJ Brain Res; 2017 Jul; 1666():48-57. PubMed ID: 28477862 [TBL] [Abstract][Full Text] [Related]
47. On the interaction between sad mood and cognitive control: the effect of induced sadness on electrophysiological modulations underlying Stroop conflict processing. Nixon E; Liddle PF; Nixon NL; Liotti M Int J Psychophysiol; 2013 Mar; 87(3):313-26. PubMed ID: 23246586 [TBL] [Abstract][Full Text] [Related]
48. Dissociable early attentional control mechanisms underlying cognitive and affective conflicts. Chen T; Kendrick KM; Feng C; Sun S; Yang X; Wang X; Luo W; Yang S; Huang X; Valdés-Sosa PA; Gong Q; Fan J; Luo YJ Sci Rep; 2016 Nov; 6():37633. PubMed ID: 27892513 [TBL] [Abstract][Full Text] [Related]
49. ERP Evidence for Implicit Priming of Top-Down Control of Attention. Blais C; Hubbard E; Mangun GR J Cogn Neurosci; 2016 May; 28(5):763-72. PubMed ID: 26765945 [TBL] [Abstract][Full Text] [Related]
50. Transcranial direct current stimulation of the prefrontal cortex increases attention to visual target stimuli. Vierheilig N; Mühlberger A; Polak T; Herrmann MJ J Neural Transm (Vienna); 2016 Oct; 123(10):1195-203. PubMed ID: 27059880 [TBL] [Abstract][Full Text] [Related]
51. The interaction of task-relevant and task-irrelevant stimulus features in the number/size congruency paradigm: an ERP study. Szucs D; Soltész F Brain Res; 2008 Jan; 1190():143-58. PubMed ID: 18076868 [TBL] [Abstract][Full Text] [Related]
52. fMRI-constrained source analysis reveals early top-down modulations of interference processing using a flanker task. Siemann J; Herrmann M; Galashan D Neuroimage; 2016 Aug; 136():45-56. PubMed ID: 27181762 [TBL] [Abstract][Full Text] [Related]
53. Conflict adaptation in prefrontal cortex: now you see it, now you don't. Kim C; Johnson NF; Gold BT Cortex; 2014 Jan; 50():76-85. PubMed ID: 24074459 [TBL] [Abstract][Full Text] [Related]
54. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching. Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532 [TBL] [Abstract][Full Text] [Related]
55. The late positive potential predicts subsequent interference with target processing. Weinberg A; Hajcak G J Cogn Neurosci; 2011 Oct; 23(10):2994-3007. PubMed ID: 21268668 [TBL] [Abstract][Full Text] [Related]
56. Two Independent Frontal Midline Theta Oscillations during Conflict Detection and Adaptation in a Simon-Type Manual Reaching Task. Töllner T; Wang Y; Makeig S; Müller HJ; Jung TP; Gramann K J Neurosci; 2017 Mar; 37(9):2504-2515. PubMed ID: 28137968 [TBL] [Abstract][Full Text] [Related]
57. Effects of theta burst stimulation over the dorsolateral prefrontal cortex on language switching - A behavioral and ERP study. Pestalozzi MI; Annoni JM; Müri RM; Jost LB Brain Lang; 2020 Jun; 205():104775. PubMed ID: 32163743 [TBL] [Abstract][Full Text] [Related]
58. Affective and cognitive modulation of performance monitoring: behavioral and ERP evidence. Simon-Thomas ER; Knight RT Cogn Affect Behav Neurosci; 2005 Sep; 5(3):362-72. PubMed ID: 16396095 [TBL] [Abstract][Full Text] [Related]
59. The active inhibition for the processing of visual irrelevant conflict information. Mao W; Wang Y Int J Psychophysiol; 2008 Jan; 67(1):47-53. PubMed ID: 17999937 [TBL] [Abstract][Full Text] [Related]
60. The neural correlates of perceptual load induced attentional selection: an fMRI study. Wei P; Szameitat AJ; Müller HJ; Schubert T; Zhou X Neuroscience; 2013 Oct; 250():372-80. PubMed ID: 23876324 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]