These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28757236)

  • 1. Fiber-based modeling of in situ ankle ligaments with consideration of progressive failure.
    Nie B; Forman JL; Panzer MB; Mait AR; Donlon JP; Kent RW
    J Biomech; 2017 Aug; 61():102-110. PubMed ID: 28757236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion.
    Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW
    Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1254-65. PubMed ID: 26712301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the in situ mechanical behavior of ankle ligaments.
    Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW
    J Mech Behav Biomed Mater; 2017 Jan; 65():502-512. PubMed ID: 27665085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Searching for the "sweet spot": the foot rotation and parallel engagement of ankle ligaments in maximizing injury tolerance.
    Nie B; Forman JL; Mait AR; Donlon JP; Panzer MB; Kent RW
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1937-1945. PubMed ID: 28634682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games: Understanding when, how and why ligament failure occurs.
    Panagiotakis E; Mok KM; Fong DT; Bull AMJ
    J Sci Med Sport; 2017 Dec; 20(12):1057-1061. PubMed ID: 28587794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data.
    Wei F; Braman JE; Weaver BT; Haut RC
    J Biomech; 2011 Oct; 44(15):2636-41. PubMed ID: 21889148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of acute lateral ankle ligament rupture in the athlete. Conservative versus surgical treatment.
    Lynch SA; Renström PA
    Sports Med; 1999 Jan; 27(1):61-71. PubMed ID: 10028133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biomechanics of the ligaments of the unstable ankle joint].
    Hintermann B
    Sportverletz Sportschaden; 1996 Sep; 10(3):48-54. PubMed ID: 9005597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: five cases from televised tennis competitions.
    Fong DT; Ha SC; Mok KM; Chan CW; Chan KM
    Am J Sports Med; 2012 Nov; 40(11):2627-32. PubMed ID: 22967824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foot characteristics in association with inversion ankle injury.
    Morrison KE; Kaminski TW
    J Athl Train; 2007; 42(1):135-42. PubMed ID: 17597955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of the lateral ligaments of the ankle: an evaluation of the effects of axial load and single plane motions on ligament strain patterns.
    Cawley PW; France EP
    Foot Ankle; 1991 Oct; 12(2):92-9. PubMed ID: 1774001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force and displacement measurements of the distal fibula during simulated ankle loading tests for high ankle sprains.
    Markolf KL; Jackson S; McAllister DR
    Foot Ankle Int; 2012 Sep; 33(9):779-86. PubMed ID: 22995268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specimen-specific computational models of ankle sprains produced in a laboratory setting.
    Button KD; Wei F; Meyer EG; Haut RC
    J Biomech Eng; 2013 Apr; 135(4):041001. PubMed ID: 24231896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging evaluation of traumatic ligamentous injuries of the ankle and foot.
    Nazarenko A; Beltran LS; Bencardino JT
    Radiol Clin North Am; 2013 May; 51(3):455-78. PubMed ID: 23622094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle.
    Beumer A; van Hemert WL; Swierstra BA; Jasper LE; Belkoff SM
    Foot Ankle Int; 2003 May; 24(5):426-9. PubMed ID: 12801200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.
    Wei F; Fong DT; Chan KM; Haut RC
    Comput Methods Biomech Biomed Engin; 2015; 18(3):243-8. PubMed ID: 23654290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the interosseous talocalcaneal ligament injury on stability of the ankle-subtalar joint complex--a cadaveric experimental study.
    Tochigi Y; Takahashi K; Yamagata M; Tamaki T
    Foot Ankle Int; 2000 Jun; 21(6):486-91. PubMed ID: 10884108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Analysis of the Individual Ligament Contributions to Syndesmotic Stability.
    Clanton TO; Williams BT; Backus JD; Dornan GJ; Liechti DJ; Whitlow SR; Saroki AJ; Turnbull TL; LaPrade RF
    Foot Ankle Int; 2017 Jan; 38(1):66-75. PubMed ID: 27681857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of population variability in ligament material properties on the mechanical behavior of ankle: a computational investigation.
    Liu Y; Zhou Q; Gan S; Nie B
    Comput Methods Biomech Biomed Engin; 2020 Feb; 23(2):43-53. PubMed ID: 31809575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.