These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

788 related articles for article (PubMed ID: 28757360)

  • 1. Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration.
    Xiang Y; Tanaka Y; Patterson B; Kang YJ; Govindaiah G; Roselaar N; Cakir B; Kim KY; Lombroso AP; Hwang SM; Zhong M; Stanley EG; Elefanty AG; Naegele JR; Lee SH; Weissman SM; Park IH
    Cell Stem Cell; 2017 Sep; 21(3):383-398.e7. PubMed ID: 28757360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Transcriptomics Reveals Conserved Regulatory Networks in Human and Mouse Interneuron Development.
    Keefe F; Monzón-Sandoval J; Rosser AE; Webber C; Li M
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining the role of the surfactant family member SFTA3 in interneuron specification.
    Chen CY; Anderson NC; Becker S; Schicht M; Stoddard C; Bräuer L; Paulsen F; Grabel L
    PLoS One; 2018; 13(11):e0198703. PubMed ID: 30408033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models.
    Kiaee K; Jodat YA; Bassous NJ; Matharu N; Shin SR
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nests of dividing neuroblasts sustain interneuron production for the developing human brain.
    Paredes MF; Mora C; Flores-Ramirez Q; Cebrian-Silla A; Del Dosso A; Larimer P; Chen J; Kang G; Gonzalez Granero S; Garcia E; Chu J; Delgado R; Cotter JA; Tang V; Spatazza J; Obernier K; Ferrer Lozano J; Vento M; Scott J; Studholme C; Nowakowski TJ; Kriegstein AR; Oldham MC; Hasenstaub A; Garcia-Verdugo JM; Alvarez-Buylla A; Huang EJ
    Science; 2022 Jan; 375(6579):eabk2346. PubMed ID: 35084970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rac1-dependent cell cycle exit of MGE precursors and GABAergic interneuron migration to the cortex.
    Vidaki M; Tivodar S; Doulgeraki K; Tybulewicz V; Kessaris N; Pachnis V; Karagogeos D
    Cereb Cortex; 2012 Mar; 22(3):680-92. PubMed ID: 21690261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly reproducible and efficient method for retinal organoid differentiation from human pluripotent stem cells.
    Harkin J; Peña KH; Gomes C; Hernandez M; Lavekar SS; So K; Lentsch K; Feder EM; Morrow S; Huang KC; Tutrow KD; Morris A; Zhang C; Meyer JS
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2317285121. PubMed ID: 38870053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trans-omic profiling uncovers molecular controls of early human cerebral organoid formation.
    Chen C; Lee S; Zyner KG; Fernando M; Nemeruck V; Wong E; Marshall LL; Wark JR; Aryamanesh N; Tam PPL; Graham ME; Gonzalez-Cordero A; Yang P
    Cell Rep; 2024 May; 43(5):114219. PubMed ID: 38748874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells.
    Ahn S; Kim TG; Kim KS; Chung S
    Methods; 2016 May; 101():103-12. PubMed ID: 26364591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin Accessibility and Transcriptional Differences in Human Stem Cell-Derived Early-Stage Retinal Organoids.
    Jones MK; Agarwal D; Mazo KW; Chopra M; Jurlina SL; Dash N; Xu Q; Ogata AR; Chow M; Hill AD; Kambli NK; Xu G; Sasik R; Birmingham A; Fisch KM; Weinreb RN; Enke RA; Skowronska-Krawczyk D; Wahlin KJ
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of human cerebral organoids with a structured outer subventricular zone.
    Walsh RM; Luongo R; Giacomelli E; Ciceri G; Rittenhouse C; Verrillo A; Galimberti M; Bocchi VD; Wu Y; Xu N; Mosole S; Muller J; Vezzoli E; Jungverdorben J; Zhou T; Barker RA; Cattaneo E; Studer L; Baggiolini A
    Cell Rep; 2024 Apr; 43(4):114031. PubMed ID: 38583153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell analyses reveal transient retinal progenitor cells in the ciliary margin of developing human retina.
    Dorgau B; Collin J; Rozanska A; Zerti D; Unsworth A; Crosier M; Hussain R; Coxhead J; Dhanaseelan T; Patel A; Sowden JC; FitzPatrick DR; Queen R; Lako M
    Nat Commun; 2024 Apr; 15(1):3567. PubMed ID: 38670973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell epigenomics reveals mechanisms of human cortical development.
    Ziffra RS; Kim CN; Ross JM; Wilfert A; Turner TN; Haeussler M; Casella AM; Przytycki PF; Keough KC; Shin D; Bogdanoff D; Kreimer A; Pollard KS; Ament SA; Eichler EE; Ahituv N; Nowakowski TJ
    Nature; 2021 Oct; 598(7879):205-213. PubMed ID: 34616060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale 3D phenotyping of human cerebral organoids.
    Albanese A; Swaney JM; Yun DH; Evans NB; Antonucci JM; Velasco S; Sohn CH; Arlotta P; Gehrke L; Chung K
    Sci Rep; 2020 Dec; 10(1):21487. PubMed ID: 33293587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation.
    Close JL; Yao Z; Levi BP; Miller JA; Bakken TE; Menon V; Ting JT; Wall A; Krostag AR; Thomsen ER; Nelson AM; Mich JK; Hodge RD; Shehata SI; Glass IA; Bort S; Shapovalova NV; Ngo NK; Grimley JS; Phillips JW; Thompson CL; Ramanathan S; Lein E
    Neuron; 2017 Mar; 93(5):1035-1048.e5. PubMed ID: 28279351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.
    Czerniecki SM; Cruz NM; Harder JL; Menon R; Annis J; Otto EA; Gulieva RE; Islas LV; Kim YK; Tran LM; Martins TJ; Pippin JW; Fu H; Kretzler M; Shankland SJ; Himmelfarb J; Moon RT; Paragas N; Freedman BS
    Cell Stem Cell; 2018 Jun; 22(6):929-940.e4. PubMed ID: 29779890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin accessibility dynamics in a model of human forebrain development.
    Trevino AE; Sinnott-Armstrong N; Andersen J; Yoon SJ; Huber N; Pritchard JK; Chang HY; Greenleaf WJ; Pașca SP
    Science; 2020 Jan; 367(6476):. PubMed ID: 31974223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain Chimeroids reveal individual susceptibility to neurotoxic triggers.
    Antón-Bolaños N; Faravelli I; Faits T; Andreadis S; Kastli R; Trattaro S; Adiconis X; Wei A; Sampath Kumar A; Di Bella DJ; Tegtmeyer M; Nehme R; Levin JZ; Regev A; Arlotta P
    Nature; 2024 Jul; 631(8019):142-149. PubMed ID: 38926573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoids.
    Brady MV; Mariani J; Koca Y; Szekely A; King RA; Bloch MH; Landeros-Weisenberger A; Leckman JF; Vaccarino FM
    Mol Psychiatry; 2022 Dec; 27(12):5007-5019. PubMed ID: 36447010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating Neuroimmune Assembloids Using Human Induced Pluripotent Stem Cell (iPSC)-Derived Cortical Organoids and Microglia.
    Kalpana K; Rao C; Semrau S; Zhang B; Noggle S; Fossati V
    Methods Mol Biol; 2024 Jul; ():. PubMed ID: 38976205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.