BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2875743)

  • 21. Interactions between neuroleptics and CYP2C6 in rat liver--in vitro and ex vivo study.
    Haduch A; Ogórka T; Boksa J; Daniel WA
    Pharmacol Rep; 2005; 57(6):872-7. PubMed ID: 16382211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of neuroleptics on imipramine demethylation in rat liver microsomes and imipramine and desipramine level in the rat brain.
    Daniel W; Melzacka M
    Biochem Pharmacol; 1986 Oct; 35(19):3249-53. PubMed ID: 2876708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of classic and newer antidepressants on the oxidation pathways of caffeine in rat liver. In vitro study.
    Daniel WA; Kot M; Wójcikowski J
    Pol J Pharmacol; 2003; 55(6):1045-53. PubMed ID: 14730100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Demethylation and hydroxylation of amitriptyline, nortriptyline, and 10-hydroxyamitriptyline in human liver microsomes.
    Mellström B; von Bahr C
    Drug Metab Dispos; 1981; 9(6):565-8. PubMed ID: 6120818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of imipramine and various steroids on hepatic in vitro N-demethylation of tricyclic antidepressants.
    Brookman S; Kourounakis P
    Res Commun Chem Pathol Pharmacol; 1977 Apr; 16(4):757-60. PubMed ID: 860088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of rat liver CYP2D in vitro and after 1-day and long-term exposure to neuroleptics in vivo-possible involvement of different mechanisms.
    Daniel WA; Haduch A; Wójcikowski J
    Eur Neuropsychopharmacol; 2005 Jan; 15(1):103-10. PubMed ID: 15572279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of amitriptyline and carbamazepine on levomepromazine metabolism in human liver: an in vitro study.
    Wójcikowski J; Basińska A; Boksa J; Daniel WA
    Pharmacol Rep; 2014 Dec; 66(6):1122-6. PubMed ID: 25443744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The metabolism of the piperazine-type phenothiazine neuroleptic perazine by the human cytochrome P-450 isoenzymes.
    Wójcikowski J; Pichard-Garcia L; Maurel P; Daniel WA
    Eur Neuropsychopharmacol; 2004 May; 14(3):199-208. PubMed ID: 15056479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of antidepressants on ethylmorphine and imipramine N-demethylation in rat liver microsomes.
    Daniel W; Melzacka M
    J Pharm Pharmacol; 1986 May; 38(5):396-8. PubMed ID: 2872321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytochrome P-450 enzymes and FMO3 contribute to the disposition of the antipsychotic drug perazine in vitro.
    Störmer E; Brockmöller J; Roots I; Schmider J
    Psychopharmacology (Berl); 2000 Sep; 151(4):312-20. PubMed ID: 11026737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caffeine metabolism during prolonged treatment of rats with antidepressant drugs.
    Kot M; Wójcikowski J; Daniel WA
    Pharmacol Rep; 2007; 59(6):727-33. PubMed ID: 18195463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacokinetics and metabolism of thioridazine during co-administration of tricyclic antidepressants.
    Daniel WA; Syrek M; Haduch A; Wójcikowski J
    Br J Pharmacol; 2000 Sep; 131(2):287-95. PubMed ID: 10991922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs.
    Koyama E; Chiba K; Tani M; Ishizaki T
    J Pharmacol Exp Ther; 1997 Jun; 281(3):1199-210. PubMed ID: 9190854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Direct interaction of tricyclic antidepressants with opiate binding sites in the bovine adrenal medulla].
    Carydakis C; Bourhim N; Giraud P; Cantau P; Oliver C; Castanas E
    C R Acad Sci III; 1986; 302(11):419-22. PubMed ID: 3013380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxylated metabolites of tricyclic antidepressants: preclinical assessment of activity.
    Potter WZ; Calil HM; Manian AA; Zavadil AP; Goodwin FK
    Biol Psychiatry; 1979 Aug; 14(4):601-13. PubMed ID: 486616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microsomal binding of amitriptyline: effect on estimation of enzyme kinetic parameters in vitro.
    Venkatakrishnan K; von Moltke LL; Obach RS; Greenblatt DJ
    J Pharmacol Exp Ther; 2000 May; 293(2):343-50. PubMed ID: 10773001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autoinduction of the metabolism of phenothiazine neuroleptics in a primary culture of human hepatocytes.
    Wójcikowski J; Maurel P; Daniel WA
    Pharmacol Rep; 2012; 64(6):1578-83. PubMed ID: 23406770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relevance of liver enzyme elevations with four different neuroleptics: a retrospective review of 7,263 treatment courses.
    Gaertner I; Altendorf K; Batra A; Gaertner HJ
    J Clin Psychopharmacol; 2001 Apr; 21(2):215-22. PubMed ID: 11270919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disopyramide, imipramine, and amitriptyline bind to a common site on the transient outward K+ channel.
    Casis O; Sánchez-Chapula JA
    J Cardiovasc Pharmacol; 1998 Oct; 32(4):521-6. PubMed ID: 9781919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of an N-methyl-4-phenylpyridinium-like metabolite of the antidiarrheal agent loperamide in human liver microsomes: underlying reason(s) for the lack of neurotoxicity despite the bioactivation event.
    Kalgutkar AS; Nguyen HT
    Drug Metab Dispos; 2004 Sep; 32(9):943-52. PubMed ID: 15319335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.