These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 28757555)
1. Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique. Žukovskaja O; Jahn IJ; Weber K; Cialla-May D; Popp J Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28757555 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical Surface-Enhanced Raman Spectroscopy of Pyocyanin Secreted by Pseudomonas aeruginosa Communities. Do H; Kwon SR; Fu K; Morales-Soto N; Shrout JD; Bohn PW Langmuir; 2019 May; 35(21):7043-7049. PubMed ID: 31042392 [TBL] [Abstract][Full Text] [Related]
3. Rapid detection of the bacterial biomarker pyocyanin in artificial sputum using a SERS-active silicon nanowire matrix covered by bimetallic noble metal nanoparticles. Žukovskaja O; Agafilushkina S; Sivakov V; Weber K; Cialla-May D; Osminkina L; Popp J Talanta; 2019 Sep; 202():171-177. PubMed ID: 31171166 [TBL] [Abstract][Full Text] [Related]
4. Solution-Based Ultra-Sensitive Surface-Enhanced Raman Scattering Detection of the Toxin Bacterial Biomarker Pyocyanin in Biological Fluids Using Sharp-Branched Gold Nanostars. Atta S; Vo-Dinh T Anal Chem; 2023 Feb; 95(5):2690-2697. PubMed ID: 36693215 [TBL] [Abstract][Full Text] [Related]
5. A portable SERS sensor for pyocyanin detection in simulated wound fluid and through swab sampling. Tanaka Y; Khoo EH; Salleh NABM; Teo SL; Ow SY; Sutarlie L; Su X Analyst; 2021 Nov; 146(22):6924-6934. PubMed ID: 34647550 [TBL] [Abstract][Full Text] [Related]
6. Development of Novel Surface-Enhanced Raman Spectroscopy-Based Biosensors by Controlling the Roughness of Gold/Alumina Platforms for Highly Sensitive Detection of Pyocyanin Secreted from El-Said WA; Saleh TS; Al-Bogami AS; Wani MY; Choi JW Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194628 [TBL] [Abstract][Full Text] [Related]
7. Detection of Pyocyanin Using a New Biodegradable SERS Biosensor Fabricated Using Gold Coated Zein Nanostructures Further Decorated with Gold Nanoparticles. Jia F; Barber E; Turasan H; Seo S; Dai R; Liu L; Li X; Bhunia AK; Kokini JL J Agric Food Chem; 2019 Apr; 67(16):4603-4610. PubMed ID: 30964288 [TBL] [Abstract][Full Text] [Related]
8. Spatial Mapping of Pyocyanin in Pseudomonas Aeruginosa Bacterial Communities Using Surface Enhanced Raman Scattering. Polisetti S; Baig NF; Morales-Soto N; Shrout JD; Bohn PW Appl Spectrosc; 2017 Feb; 71(2):215-223. PubMed ID: 27354400 [TBL] [Abstract][Full Text] [Related]
9. Diagnosis and Stratification of Rodriguez-Urretavizcaya B; Pascual N; Pastells C; Martin-Gomez MT; Vilaplana L; Marco MP Front Cell Infect Microbiol; 2021; 11():786929. PubMed ID: 34970510 [TBL] [Abstract][Full Text] [Related]
10. DNA-functionalized carbon quantum dots for electrochemical detection of pyocyanin: A quorum sensing molecule in Pseudomonas aeruginosa. Thulasinathan B; D S; Murugan S; Panda SK; Veerapandian M; Manickam P Biosens Bioelectron; 2023 May; 227():115156. PubMed ID: 36842368 [TBL] [Abstract][Full Text] [Related]
11. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays. Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472 [TBL] [Abstract][Full Text] [Related]
12. Immunochemical Determination of Pyocyanin and 1-Hydroxyphenazine as Potential Biomarkers of Pseudomonas aeruginosa Infections. Pastells C; Pascual N; Sanchez-Baeza F; Marco MP Anal Chem; 2016 Feb; 88(3):1631-8. PubMed ID: 26738983 [TBL] [Abstract][Full Text] [Related]
13. Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. Elkhawaga AA; Khalifa MM; El-Badawy O; Hassan MA; El-Said WA PLoS One; 2019; 14(7):e0216438. PubMed ID: 31361746 [TBL] [Abstract][Full Text] [Related]
14. Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples. Wu X; Chen J; Li X; Zhao Y; Zughaier SM Nanomedicine; 2014 Nov; 10(8):1863-70. PubMed ID: 24832961 [TBL] [Abstract][Full Text] [Related]
15. Longitudinal Monitoring of Biofilm Formation via Robust Surface-Enhanced Raman Scattering Quantification of Pseudomonas aeruginosa-Produced Metabolites. Nguyen CQ; Thrift WJ; Bhattacharjee A; Ranjbar S; Gallagher T; Darvishzadeh-Varcheie M; Sanderson RN; Capolino F; Whiteson K; Baldi P; Hochbaum AI; Ragan R ACS Appl Mater Interfaces; 2018 Apr; 10(15):12364-12373. PubMed ID: 29589446 [TBL] [Abstract][Full Text] [Related]
16. New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water. Yu D; Yong YC; Liu C; Fang Y; Bai L; Dong S Chemosphere; 2017 Oct; 184():106-111. PubMed ID: 28582765 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Alatraktchi FA; Johansen HK; Molin S; Svendsen WE Nanomedicine (Lond); 2016 Aug; 11(16):2185-95. PubMed ID: 27464037 [TBL] [Abstract][Full Text] [Related]
18. Nanograss sensor for selective detection of Pseudomonas aeruginosa by pyocyanin identification in airway samples. Alatraktchi FA; Dimaki M; Støvring N; Johansen HK; Molin S; Svendsen WE Anal Biochem; 2020 Mar; 593():113586. PubMed ID: 31981486 [TBL] [Abstract][Full Text] [Related]
19. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry. Alatraktchi FA; Andersen SB; Johansen HK; Molin S; Svendsen WE Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27007376 [TBL] [Abstract][Full Text] [Related]