BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 28758207)

  • 1. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.
    Onwude DI; Hashim N; Abdan K; Janius R; Chen G
    J Sci Food Agric; 2018 Mar; 98(4):1310-1324. PubMed ID: 28758207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fully coupled multiphase model for infrared-convective drying of sweet potato.
    Onwude DI; Hashim N; Chen G; Putranto A; Udoenoh NR
    J Sci Food Agric; 2021 Jan; 101(2):398-413. PubMed ID: 32627847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks.
    Kaveh M; Chayjan RA
    Acta Sci Pol Technol Aliment; 2014; 13(1):65-78. PubMed ID: 24583385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology.
    Oladejo AO; Ma H
    J Sci Food Agric; 2016 Aug; 96(11):3688-93. PubMed ID: 26621787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postharvest monitoring of organic potato (cv. Anuschka) during hot-air drying using visible-NIR hyperspectral imaging.
    Moscetti R; Sturm B; Crichton SO; Amjad W; Massantini R
    J Sci Food Agric; 2018 May; 98(7):2507-2517. PubMed ID: 29023753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of anthocyanin and moisture content of purple sweet potatoes during drying process by their optical properties in the 400-1050 nm range.
    Peng J; Wang K; Ma C; Long J; Tu K; Pan L
    Food Chem; 2021 Oct; 359():129811. PubMed ID: 33951612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development, validation, and comparison of FE modeling and ANN model for mixed-mode solar drying of potato cylinders.
    Dhalsamant K
    J Food Sci; 2021 Aug; 86(8):3384-3402. PubMed ID: 34287892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in oxalate composition and other nutritive traits in root tubers and shoots of sweet potato (Ipomoea batatas L. [Lam.]) under water stress.
    Gouveia CS; Ganança JF; Lebot V; Pinheiro de Carvalho MÂ
    J Sci Food Agric; 2020 Mar; 100(4):1702-1710. PubMed ID: 31803935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant-growth regulators alter phytochemical constituents and pharmaceutical quality in Sweet potato (Ipomoea batatas L.).
    Ghasemzadeh A; Talei D; Jaafar HZ; Juraimi AS; Mohamed MT; Puteh A; Halim MR
    BMC Complement Altern Med; 2016 May; 16():152. PubMed ID: 27234523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change in dielectric properties of sweet potato during microwave drying.
    Lee D; Mo C; Lee CJ; Lee SH
    Food Sci Biotechnol; 2019 Jun; 28(3):731-739. PubMed ID: 31093430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of heat treatment on quality, thermal and pasting properties of sweet potato starch during yearlong storage.
    Hu W; Jiang A; Jin L; Liu C; Tian M; Wang Y
    J Sci Food Agric; 2011 Jun; 91(8):1499-504. PubMed ID: 21445886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of variable nitrogen fertilization on amino acid content in sweet potato tubers (Ipomoea batatas L. [Lam.]) cultivated in central and eastern Europe.
    Sawicka B; Pszczółkowski P; Krochmal-Marczak B; Barbaś P; Özdemir FA
    J Sci Food Agric; 2020 Aug; 100(11):4132-4138. PubMed ID: 32356566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ultrasound-assisted osmotic dehydration on the drying kinetics, water state, and physicochemical properties of microwave vacuum-dried potato slices.
    Cheng X; Wang S; Shahid Iqbal M; Pan L; Hong L
    Ultrason Sonochem; 2023 Oct; 99():106557. PubMed ID: 37625257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of ohmic heating on vacuum drying rate of sweet potato tissue.
    Zhong T; Lima M
    Bioresour Technol; 2003 May; 87(3):215-20. PubMed ID: 12507859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization conditions for anthocyanin and phenolic content extraction form purple sweet potato using response surface methodology.
    Ahmed M; Akter MS; Eun JB
    Int J Food Sci Nutr; 2011 Feb; 62(1):91-6. PubMed ID: 20858156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance and mechanism of an innovative humidity-controlled hot-air drying method for concentrated starch gels: A case of sweet potato starch noodles.
    Xiang Z; Ye F; Zhou Y; Wang L; Zhao G
    Food Chem; 2018 Dec; 269():193-201. PubMed ID: 30100424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in polyphenolic content and radical-scavenging activity of sweet potato (Ipomoea batatas L.) during storage at optimal and low temperatures.
    Ishiguro K; Yahara S; Yoshimoto M
    J Agric Food Chem; 2007 Dec; 55(26):10773-8. PubMed ID: 18038989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of trypsin inhibitors in sweet potato and taro tubers during processing.
    Kiran KS; Padmaja G
    Plant Foods Hum Nutr; 2003; 58(2):153-63. PubMed ID: 12906353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling moisture diffusivity of pomegranate seed cultivars under fixed, semi fluidized and fluidized bed using mathematical and neural network methods.
    Chayjan RA; Salari K; Barikloo H
    Acta Sci Pol Technol Aliment; 2012 Apr; 11(2):131-48. PubMed ID: 22493156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.