These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28758271)

  • 1. Visually stressful striped patterns alter human visual cortical functional connectivity.
    Huang J; Zhu DC
    Hum Brain Mapp; 2017 Nov; 38(11):5474-5484. PubMed ID: 28758271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. fMRI evidence that precision ophthalmic tints reduce cortical hyperactivation in migraine.
    Huang J; Zong X; Wilkins A; Jenkins B; Bozoki A; Cao Y
    Cephalalgia; 2011 Jun; 31(8):925-36. PubMed ID: 21622479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous activity in the visual cortex is organized by visual streams.
    Lu KH; Jeong JY; Wen H; Liu Z
    Hum Brain Mapp; 2017 Sep; 38(9):4613-4630. PubMed ID: 28608643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus-Tuned Structure of Correlated fMRI Activity in Human Visual Cortex.
    Ryu J; Lee SH
    Cereb Cortex; 2018 Feb; 28(2):693-712. PubMed ID: 28108488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From evoked potentials to cortical currents: Resolving V1 and V2 components using retinotopy constrained source estimation without fMRI.
    Inverso SA; Goh XL; Henriksson L; Vanni S; James AC
    Hum Brain Mapp; 2016 May; 37(5):1696-709. PubMed ID: 26870938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.
    Dawson DA; Lam J; Lewis LB; Carbonell F; Mendola JD; Shmuel A
    Brain Connect; 2016 Feb; 6(1):57-75. PubMed ID: 26415043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epicenters of dynamic connectivity in the adaptation of the ventral visual system.
    Prčkovska V; Huijbers W; Schultz A; Ortiz-Teran L; Peña-Gomez C; Villoslada P; Johnson K; Sperling R; Sepulcre J
    Hum Brain Mapp; 2017 Apr; 38(4):1965-1976. PubMed ID: 28029725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation.
    Griffis JC; Elkhetali AS; Burge WK; Chen RH; Bowman AD; Szaflarski JP; Visscher KM
    Neuroimage; 2017 Feb; 146():1071-1083. PubMed ID: 27554527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of functional and structural changes in migraine with aura by magnetic resonance imaging.
    Hougaard A
    Dan Med J; 2015 Aug; 62(8):B5129. PubMed ID: 26239598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.
    Raemaekers M; Schellekens W; van Wezel RJ; Petridou N; Kristo G; Ramsey NF
    Neuroimage; 2014 Jan; 84():911-21. PubMed ID: 24099850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.
    Larsson J; Harrison C; Jackson J; Oh SM; Zeringyte V
    J Neurophysiol; 2017 Feb; 117(2):818-835. PubMed ID: 27903637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Color and spatial frequency are related to visual pattern sensitivity in migraine.
    Shepherd AJ; Hine TJ; Beaumont HM
    Headache; 2013; 53(7):1087-103. PubMed ID: 23464876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting-state connectivity and functional specialization in human medial parieto-occipital cortex.
    Tosoni A; Pitzalis S; Committeri G; Fattori P; Galletti C; Galati G
    Brain Struct Funct; 2015 Nov; 220(6):3307-21. PubMed ID: 25096286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in functional connectivity of human MT/V5 with visual motion input.
    Hampson M; Olson IR; Leung HC; Skudlarski P; Gore JC
    Neuroreport; 2004 Jun; 15(8):1315-9. PubMed ID: 15167557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneously Emerging Patterns in Human Visual Cortex Reflect Responses to Naturalistic Sensory Stimuli.
    Wilf M; Strappini F; Golan T; Hahamy A; Harel M; Malach R
    Cereb Cortex; 2017 Jan; 27(1):750-763. PubMed ID: 26574501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Cortex Plasticity Following Peripheral Damage To The Visual System: fMRI Evidence.
    Lemos J; Pereira D; Castelo-Branco M
    Curr Neurol Neurosci Rep; 2016 Oct; 16(10):89. PubMed ID: 27542799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the visual brain areas susceptible to phosphene induction through brain stimulation.
    Schaeffner LF; Welchman AE
    Exp Brain Res; 2017 Jan; 235(1):205-217. PubMed ID: 27683006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroplasticity of visual brain network induced by hypoxia.
    Zhang X; Liu Y; Yuan F; Hang Y; Zhang R; Lin J; Wang X; Zhang J
    Cereb Cortex; 2024 May; 34(5):. PubMed ID: 38752980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI.
    Chan KC; Fan SJ; Chan RW; Cheng JS; Zhou IY; Wu EX
    Neuroimage; 2014 Apr; 90():235-45. PubMed ID: 24394694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting high-level visual areas in the absence of task fMRI.
    Molloy MF; Saygin ZM; Osher DE
    Sci Rep; 2024 May; 14(1):11376. PubMed ID: 38762549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.