These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 28758358)
1. Freeze-Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds. Brougham CM; Levingstone TJ; Shen N; Cooney GM; Jockenhoevel S; Flanagan TC; O'Brien FJ Adv Healthc Mater; 2017 Nov; 6(21):. PubMed ID: 28758358 [TBL] [Abstract][Full Text] [Related]
2. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Samourides A; Browning L; Hearnden V; Chen B Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
4. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684 [TBL] [Abstract][Full Text] [Related]
5. Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. Lv Q; Feng Q J Mater Sci Mater Med; 2006 Dec; 17(12):1349-56. PubMed ID: 17143767 [TBL] [Abstract][Full Text] [Related]
6. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
7. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
8. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications. Olami H; Zilberman M J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294 [TBL] [Abstract][Full Text] [Related]
11. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. O'Brien FJ; Harley BA; Yannas IV; Gibson L Biomaterials; 2004 Mar; 25(6):1077-86. PubMed ID: 14615173 [TBL] [Abstract][Full Text] [Related]
12. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Sun K; Li R; Jiang W; Sun Y; Li H Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126 [TBL] [Abstract][Full Text] [Related]
13. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. Hou Q; Grijpma DW; Feijen J J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):732-40. PubMed ID: 14598400 [TBL] [Abstract][Full Text] [Related]
14. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering. Solovieva EV; Fedotov AY; Mamonov VE; Komlev VS; Panteleyev AA Biomed Mater; 2018 Jan; 13(2):025007. PubMed ID: 28972200 [TBL] [Abstract][Full Text] [Related]
15. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering. Kakkar P; Verma S; Manjubala I; Madhan B Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():343-7. PubMed ID: 25491838 [TBL] [Abstract][Full Text] [Related]
16. Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering. Bhardwaj N; Chakraborty S; Kundu SC Int J Biol Macromol; 2011 Oct; 49(3):260-7. PubMed ID: 21557966 [TBL] [Abstract][Full Text] [Related]
17. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Alizadeh M; Abbasi F; Khoshfetrat AB; Ghaleh H Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3958-67. PubMed ID: 23910302 [TBL] [Abstract][Full Text] [Related]
18. Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Zhu Y; Wan Y; Zhang J; Yin D; Cheng W Colloids Surf B Biointerfaces; 2014 Jan; 113():352-60. PubMed ID: 24121078 [TBL] [Abstract][Full Text] [Related]
19. The effect of hyaluronic acid on biofunctionality of gelatin-collagen intestine tissue engineering scaffolds. Shabafrooz V; Mozafari M; Köhler GA; Assefa S; Vashaee D; Tayebi L J Biomed Mater Res A; 2014 Sep; 102(9):3130-9. PubMed ID: 24132994 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Autissier A; Le Visage C; Pouzet C; Chaubet F; Letourneur D Acta Biomater; 2010 Sep; 6(9):3640-8. PubMed ID: 20215057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]