These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 28758679)
1. Water stress and ripeness effects on the volatile composition of Cabernet Sauvignon wines. Talaverano I; Ubeda C; Cáceres-Mella A; Valdés ME; Pastenes C; Peña-Neira Á J Sci Food Agric; 2018 Feb; 98(3):1140-1152. PubMed ID: 28758679 [TBL] [Abstract][Full Text] [Related]
2. Harvesting at the Right Time: Maturity and Its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine. Zhao T; Wu J; Meng J; Shi P; Fang Y; Zhang Z; Sun X Molecules; 2019 Jul; 24(15):. PubMed ID: 31366183 [TBL] [Abstract][Full Text] [Related]
3. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties. Schelezki OJ; Šuklje K; Boss PK; Jeffery DW Food Chem; 2018 Sep; 259():196-206. PubMed ID: 29680044 [TBL] [Abstract][Full Text] [Related]
4. Effect of regulated deficit irrigation on fatty acids and their derived volatiles in 'Cabernet Sauvignon' grapes and wines of Ningxia, China. Ju YL; Liu M; Tu TY; Zhao XF; Yue XF; Zhang JX; Fang YL; Meng JF Food Chem; 2018 Apr; 245():667-675. PubMed ID: 29287424 [TBL] [Abstract][Full Text] [Related]
5. Influence of the harvest date on berry compositions and wine profiles of Vitis vinifera L. cv. 'Cabernet Sauvignon' under a semiarid continental climate over two consecutive years. Gao XT; Li HQ; Wang Y; Peng WT; Chen W; Cai XD; Li SD; He F; Duan CQ; Wang J Food Chem; 2019 Sep; 292():237-246. PubMed ID: 31054670 [TBL] [Abstract][Full Text] [Related]
6. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. Canuti V; Conversano M; Calzi ML; Heymann H; Matthews MA; Ebeler SE J Chromatogr A; 2009 Apr; 1216(15):3012-22. PubMed ID: 19233370 [TBL] [Abstract][Full Text] [Related]
7. Volatile aroma compounds in wines from Chinese wild/hybrid species. Wei Z; Liu X; Huang Y; Lu J; Zhang Y J Food Biochem; 2019 Oct; 43(10):e12684. PubMed ID: 31608471 [TBL] [Abstract][Full Text] [Related]
8. Study of aromatic profile of different crosses of Monastrell white wines. Moreno-Olivares JD; Paladines-Quezada D; Fernández-Fernández JI; Bleda-Sánchez JA; Martínez-Moreno A; Gil-Muñoz R J Sci Food Agric; 2020 Jan; 100(1):38-49. PubMed ID: 31435935 [TBL] [Abstract][Full Text] [Related]
9. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Petronilho S; Lopez R; Ferreira V; Coimbra MA; Rocha SM Molecules; 2020 Jan; 25(2):. PubMed ID: 31936556 [TBL] [Abstract][Full Text] [Related]
10. Associations between the sensory attributes and volatile composition of Cabernet Sauvignon wines and the volatile composition of the grapes used for their production. Forde CG; Cox A; Williams ER; Boss PK J Agric Food Chem; 2011 Mar; 59(6):2573-83. PubMed ID: 21332199 [TBL] [Abstract][Full Text] [Related]
11. 1,8-Cineole in French Red Wines: Evidence for a Contribution Related to Its Various Origins. Poitou X; Thibon C; Darriet P J Agric Food Chem; 2017 Jan; 65(2):383-393. PubMed ID: 28060498 [TBL] [Abstract][Full Text] [Related]
12. Volatile composition of Carignan noir wines from ungrafted and grafted onto País (Vitis vinifera L.) grapevines from ten wine-growing sites in Maule Valley, Chile. Gutiérrez-Gamboa G; Garde-Cerdán T; Carrasco-Quiroz M; Pérez-Álvarez EP; Martínez-Gil AM; Del Alamo-Sanza M; Moreno-Simunovic Y J Sci Food Agric; 2018 Aug; 98(11):4268-4278. PubMed ID: 29424428 [TBL] [Abstract][Full Text] [Related]
13. Effect of Vine Water and Nitrogen Status, as Well as Temperature, on Some Aroma Compounds of Aged Red Bordeaux Wines. Le Menn N; van Leeuwen C; Picard M; Riquier L; de Revel G; Marchand S J Agric Food Chem; 2019 Jun; 67(25):7098-7109. PubMed ID: 31199133 [TBL] [Abstract][Full Text] [Related]
14. Pre-fermentation approaches to producing lower alcohol wines from Cabernet Sauvignon and Shiraz: Implications for wine quality based on chemical and sensory analysis. Schelezki OJ; Antalick G; Šuklje K; Jeffery DW Food Chem; 2020 Mar; 309():125698. PubMed ID: 31718838 [TBL] [Abstract][Full Text] [Related]
15. Volatile composition of Merlot wine from different vine water status. Qian MC; Fang Y; Shellie K J Agric Food Chem; 2009 Aug; 57(16):7459-63. PubMed ID: 19627143 [TBL] [Abstract][Full Text] [Related]
16. Effect of the winemaking process on the volatile composition and aromatic profile of Tempranillo Blanco wines. Ayestarán B; Martínez-Lapuente L; Guadalupe Z; Canals C; Adell E; Vilanova M Food Chem; 2019 Mar; 276():187-194. PubMed ID: 30409583 [TBL] [Abstract][Full Text] [Related]
17. Effect of Vertical Shoot-Positioned, Scott-Henry, Geneva Double-Curtain, Arch-Cane, and Parral Training Systems on the Volatile Composition of Albariño Wines. Vilanova M; Genisheva Z; Tubio M; Álvarez K; Lissarrague JR; Oliveira JM Molecules; 2017 Sep; 22(9):. PubMed ID: 28885582 [TBL] [Abstract][Full Text] [Related]
18. Effects of Regulated Deficit Irrigation on Amino Acid Profiles and Their Derived Volatile Compounds in Cabernet Sauvignon ( Ju YL; Xu GQ; Yue XF; Zhao XF; Tu TY; Zhang JX; Fang YL Molecules; 2018 Aug; 23(8):. PubMed ID: 30096898 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of aromatic compounds in young red wines from cabernet sauvignon, cabernet franc, and cabernet gernischet varieties in China. Zhang M; Xu Q; Duan C; Qu W; Wu Y J Food Sci; 2007 Jun; 72(5):C248-52. PubMed ID: 17995710 [TBL] [Abstract][Full Text] [Related]