These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2875871)

  • 41. The prokaryotic thermophilic TF1-ATPase is functionally compatible with the eukaryotic CFo-part of the chloroplast ATP-synthase.
    Galmiche JM; Pezennec S; Zhao R; Girault G; Baeuerlein E
    FEBS Lett; 1994 Jan; 338(2):152-6. PubMed ID: 8307173
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Covalent modification of the non-catalytic sites of the H(+)-ATPase from chloroplasts with 2-azido-[alpha-(32)P]ATP and its effect on ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):378-400. PubMed ID: 11342174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of phosphate on the ADP-induced hysteretic inhibition of mitochondrial adenosine 5'-triphosphatase. Effects of the natural protein inhibitor.
    Di Pietro A; Fellous G; Godinot C; Gautheron DC
    Biochim Biophys Acta; 1986 Sep; 851(2):283-94. PubMed ID: 2874830
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From uni-site to multi-site ATP synthesis in thylakoid membranes.
    Labahn A; Gräber P
    Biochim Biophys Acta; 1993 Sep; 1144(2):170-6. PubMed ID: 8369335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for changes in the nucleotide conformation in the active site of H(+)-ATPase as determined by pulsed EPR spectroscopy.
    Schneider B; Sigalat C; Amano T; Zimmermann JL
    Biochemistry; 2000 Dec; 39(50):15500-12. PubMed ID: 11112536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The mechanism of stimulation of MgATPase activity of chloroplast F1-ATPase by non-catalytic adenine-nucleotide binding. Acceleration of the ATP-dependent release of inhibitory ADP from a catalytic site.
    Murataliev MB; Boyer PD
    Eur J Biochem; 1992 Oct; 209(2):681-7. PubMed ID: 1425675
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pre-steady state kinetic studies on H(+)-ATPase from Candida albicans.
    Manzoor N; Amin M; Khan LA
    J Biochem; 1999 Oct; 126(4):776-80. PubMed ID: 10502688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A two-site mechanism for ATP hydrolysis by the asymmetric Rep dimer P2S as revealed by site-specific inhibition with ADP-A1F4.
    Wong I; Lohman TM
    Biochemistry; 1997 Mar; 36(11):3115-25. PubMed ID: 9115987
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate.
    Murataliev MB
    Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectroscopic characterization of the ATPase of the thermophilic bacterium PS3 and its isolated subunits.
    Rögner M; Gräber P
    J Biochem; 1986 Apr; 99(4):993-1003. PubMed ID: 2940234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.
    Hisabori T; Yoshida M; Sakurai H
    J Biochem; 1986 Sep; 100(3):663-70. PubMed ID: 2877979
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic modelling of the proton translocating CF0CF1-ATP synthase from spinach.
    Pänke O; Rumberg B
    FEBS Lett; 1996 Apr; 383(3):196-200. PubMed ID: 8925895
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intrinsic uncoupling in the ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2008 Dec; 1777(12):1518-27. PubMed ID: 18952048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel approaches towards characterization of the high-affinity nucleotide binding sites on mitochondrial F1-ATPase by the fluorescence probes 3'-O-(1-naphthoyl)adenosine di- and triphosphate.
    Weber J; Rögner M; Schäfer G
    Biochim Biophys Acta; 1987 Jun; 892(1):30-41. PubMed ID: 2883993
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconstitution of thermostable ATPase capable of energy coupling from its purified subunits.
    Yoshida M; Okamoto H; Sone N; Hirata H; Kagawa Y
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):936-40. PubMed ID: 139610
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP.
    Thomassen J; Klungsøyr L
    Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Presteady-state kinetics of ATP hydrolysis by chloroplast CF1-ATPASE].
    Mal'ian AN; Vitseva OI
    Biokhimiia; 1983 May; 48(5):718-24. PubMed ID: 6223667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.