These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2875871)

  • 61. Reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP, with E. coli F1-ATPase and its subunits: the roles of the high affinity binding site in the alpha subunit and the low affinity binding site in the beta subunit.
    Matsuoka I; Takeda K; Futai M; Tonomura Y
    J Biochem; 1982 Nov; 92(5):1383-98. PubMed ID: 6218158
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Complex cooperativity of ATP hydrolysis in the F(1)-ATPase molecular motor.
    Liu MS; Todd BD; Sadus RJ
    Biochim Biophys Acta; 2004 May; 1698(2):197-202. PubMed ID: 15134652
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Activation/inactivation and uni-site catalysis by the reconstituted ATP-synthase from chloroplasts.
    Fromme P; Gräber P
    Biochim Biophys Acta; 1990 Mar; 1016(1):29-42. PubMed ID: 2178683
    [TBL] [Abstract][Full Text] [Related]  

  • 64. ATP hydrolysis in ATP synthases can be differently coupled to proton transport and modulated by ADP and phosphate: a structure based model of the mechanism.
    D'Alessandro M; Melandri BA
    Biochim Biophys Acta; 2010; 1797(6-7):755-62. PubMed ID: 20230778
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP.
    García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M
    Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A single mutation at the catalytic site of TF1-alpha3beta3gamma complex switches the kinetics of ATP hydrolysis from negative to positive cooperativity.
    Muneyuki E; Odaka M; Yoshida M
    FEBS Lett; 1997 Aug; 413(1):55-9. PubMed ID: 9287116
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Product-activation of Escherichia coli membrane-bound H(+)-ATPase (F1F0-ATPase) connected with epsilon-subunit at alkaline pH.
    Wu JH; Li SG; Lin ZH
    Biochim Biophys Acta; 1994 Mar; 1185(1):50-5. PubMed ID: 8142415
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modulation of coupling in the Escherichia coli ATP synthase by ADP and P
    D'Alessandro M; Turina P; Melandri BA; Dunn SD
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):34-44. PubMed ID: 27751906
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fluorescence quenching by nucleotides of the plasma membrane H+-ATPase from Kluyveromyces lactis.
    Sampedro JG; Ruiz-Granados YG; Nájera H; Téllez-Valencia A; Uribe S
    Biochemistry; 2007 May; 46(18):5616-22. PubMed ID: 17439159
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis.
    Lodeyro AF; Calcaterra NB; Roveri OA
    Biochim Biophys Acta; 2001 Nov; 1506(3):236-43. PubMed ID: 11779557
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modulation of the GTPase activity of the chloroplast F1-ATPase by ATP binding at noncatalytic sites.
    Xue Z; Boyer PD
    Eur J Biochem; 1989 Feb; 179(3):677-81. PubMed ID: 2522043
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Blocking one non-catalytic ADP binding site results in complete inhibition of the F-type ATPase from the thermophilic Bacillus PS3.
    Richard P
    Biochim Biophys Acta; 1996 Jul; 1275(3):141-4. PubMed ID: 8695629
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Single-site catalysis of F1-ATPase from thermophilic bacterium PS3 and its dominance in steady-state catalysis at low ATP concentration.
    Yohda M; Yoshida M
    J Biochem; 1987 Oct; 102(4):875-83. PubMed ID: 2893790
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of dimethyl sulfoxide on catalysis in Escherichia coli F1-ATPase.
    al-Shawi MK; Senior AE
    Biochemistry; 1992 Jan; 31(3):886-91. PubMed ID: 1531028
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type.
    Yamaguchi M; Tonomura Y
    J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Numerical simulation of uni-site and bi-site ATP-hydrolysis catalyzed by the membrane-bound H(+)-ATPase from chloroplasts.
    Labahn A; Gräber P
    Acta Physiol Scand Suppl; 1992; 607():241-4. PubMed ID: 1449067
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis.
    Slepenkov SV; Witt SN
    Biochemistry; 1998 Jan; 37(4):1015-24. PubMed ID: 9454592
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Kinetics of ATP synthesis catalyzed by the H(+)-ATPase from chloroplasts (CF0F1) reconstituted into liposomes and coreconstituted with bacteriorhodopsin.
    Richard P; Gräber P
    Eur J Biochem; 1992 Nov; 210(1):287-91. PubMed ID: 1446676
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of nucleotides on the thermal stability and on the deuteration kinetics of the thermophilic F0F1 ATP synthase.
    Villaverde J; Cladera J; Padrós E; Rigaud JL; Duñach M
    Eur J Biochem; 1997 Mar; 244(2):441-8. PubMed ID: 9119010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.