These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 28758984)
1. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands. Salem SI; Higa H; Kim H; Kobayashi H; Oki K; Oki T Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758984 [TBL] [Abstract][Full Text] [Related]
2. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Wang X; Gong Z; Pu R Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190 [TBL] [Abstract][Full Text] [Related]
3. [Remote chlorophyll a retrieval in Taihu Lake by three-band model using hyperion hyperspectral data]. Du C; Wang SX; Zhou Y; Yan FL Huan Jing Ke Xue; 2009 Oct; 30(10):2904-10. PubMed ID: 19968105 [TBL] [Abstract][Full Text] [Related]
4. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results. Dall'Olmo G; Gitelson AA Appl Opt; 2006 May; 45(15):3577-92. PubMed ID: 16708105 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes. Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542 [TBL] [Abstract][Full Text] [Related]
6. A novel chlorophyll-a retrieval model based on suspended particulate matter classification and different machine learning. Fang C; Song C; Wen Z; Liu G; Wang X; Li S; Shang Y; Tao H; Lyu L; Song K Environ Res; 2024 Jan; 240(Pt 1):117430. PubMed ID: 37866530 [TBL] [Abstract][Full Text] [Related]
7. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Shi K; Li Y; Li L; Lu H; Song K; Liu Z; Xu Y; Li Z Sci Total Environ; 2013 Feb; 444():1-15. PubMed ID: 23262320 [TBL] [Abstract][Full Text] [Related]
8. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations. Cheng C; Wei Y; Lv G; Xu N Environ Monit Assess; 2019 Jan; 191(2):84. PubMed ID: 30659368 [TBL] [Abstract][Full Text] [Related]
9. Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes. Xue K; Boss E; Ma R; Shen M Appl Opt; 2019 Nov; 58(31):8549-8564. PubMed ID: 31873359 [TBL] [Abstract][Full Text] [Related]
10. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China. Chen J; Quan W; Cui T Water Environ Res; 2015 Jan; 87(1):44-51. PubMed ID: 25630126 [TBL] [Abstract][Full Text] [Related]
11. Multi-sensor and multi-platform retrieval of water chlorophyll a concentration in karst wetlands using transfer learning frameworks with ASD, UAV, and Planet CubeSate reflectance data. Fu B; Li S; Lao Z; Yuan B; Liang Y; He W; Sun W; He H Sci Total Environ; 2023 Nov; 901():165963. PubMed ID: 37543316 [TBL] [Abstract][Full Text] [Related]
12. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application]. Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276 [TBL] [Abstract][Full Text] [Related]
13. [Remote Sensing Estimation of Chlorophyll-a Concentration in Inland Lakes Based on GOCI Image and Optical Classification of Water Body]. Feng C; Jin Q; Wang YN; Zhao LN; Lu H; Li YM Huan Jing Ke Xue; 2015 May; 36(5):1557-64. PubMed ID: 26314100 [TBL] [Abstract][Full Text] [Related]
14. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758 [TBL] [Abstract][Full Text] [Related]
15. [Muti-model collaborative retrieval of chlorophyll a in Taihu lake based on data assimilation ]. Li Y; Li YM; Lü H; Zhu L; Wu CQ; Du CG; Wang S Huan Jing Ke Xue; 2014 Sep; 35(9):3389-96. PubMed ID: 25518656 [TBL] [Abstract][Full Text] [Related]
16. Development of ocean color algorithms for estimating chlorophyll-a concentrations and inherent optical properties using gene expression programming (GEP). Chang CH Opt Express; 2015 Mar; 23(5):5417-37. PubMed ID: 25836776 [TBL] [Abstract][Full Text] [Related]
17. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery. Chen J; Quan W Environ Monit Assess; 2013 Mar; 185(3):2243-55. PubMed ID: 22707149 [TBL] [Abstract][Full Text] [Related]
18. Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data. Moses WJ; Gitelson AA; Perk RL; Gurlin D; Rundquist DC; Leavitt BC; Barrow TM; Brakhage P Water Res; 2012 Mar; 46(4):993-1004. PubMed ID: 22209281 [TBL] [Abstract][Full Text] [Related]
19. Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll- Warren MA; Simis SGH; Selmes N Remote Sens Environ; 2021 Nov; 265():112651. PubMed ID: 34732943 [TBL] [Abstract][Full Text] [Related]
20. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Yacobi YZ; Moses WJ; Kaganovsky S; Sulimani B; Leavitt BC; Gitelson AA Water Res; 2011 Mar; 45(7):2428-36. PubMed ID: 21376361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]