These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28759010)

  • 1. Establishment and long-term culture of human cystic fibrosis endothelial cells.
    Plebani R; Tripaldi R; Lanuti P; Recchiuti A; Patruno S; Di Silvestre S; Simeone P; Anile M; Venuta F; Prioletta M; Mucilli F; Del Porto P; Marchisio M; Pandolfi A; Romano M
    Lab Invest; 2017 Nov; 97(11):1375-1384. PubMed ID: 28759010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of endothelial cell dysfunction in cystic fibrosis.
    Totani L; Plebani R; Piccoli A; Di Silvestre S; Lanuti P; Recchiuti A; Cianci E; Dell'Elba G; Sacchetti S; Patruno S; Guarnieri S; Mariggiò MA; Mari VC; Anile M; Venuta F; Del Porto P; Moretti P; Prioletta M; Mucilli F; Marchisio M; Pandolfi A; Evangelista V; Romano M
    Biochim Biophys Acta Mol Basis Dis; 2017 Dec; 1863(12):3243-3253. PubMed ID: 28847515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysregulated proinflammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis.
    Huaux F; Noel S; Dhooghe B; Panin N; Lo Re S; Lison D; Wallemacq P; Marbaix E; Scholte BJ; Lebecque P; Leal T
    PLoS One; 2013; 8(5):e64341. PubMed ID: 23734196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells.
    Simsek S; Zhou T; Robinson CL; Tsai SY; Crespo M; Amin S; Lin X; Hon J; Evans T; Chen S
    Stem Cells Transl Med; 2016 May; 5(5):572-9. PubMed ID: 27034411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508).
    Chauvet S; Traboulsi W; Thevenon L; Kouadri A; Feige JJ; Camara B; Alfaidy N; Benharouga M
    Am J Physiol Lung Cell Mol Physiol; 2015 Aug; 309(3):L314-22. PubMed ID: 26047640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain-dependent pulmonary gene expression profiles of a cystic fibrosis mouse model.
    Haston CK; Cory S; Lafontaine L; Dorion G; Hallett MT
    Physiol Genomics; 2006 Apr; 25(2):336-45. PubMed ID: 16614460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CFTR and ENaC debate: how important is ENaC in CF lung disease?
    Collawn JF; Lazrak A; Bebok Z; Matalon S
    Am J Physiol Lung Cell Mol Physiol; 2012 Jun; 302(11):L1141-6. PubMed ID: 22492740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells.
    Voisin G; Bouvet GF; Legendre P; Dagenais A; Massé C; Berthiaume Y
    Physiol Genomics; 2014 Sep; 46(17):634-46. PubMed ID: 24893876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subacute TGFβ expression drives inflammation, goblet cell hyperplasia, and pulmonary function abnormalities in mice with effects dependent on CFTR function.
    Kramer EL; Hardie WD; Madala SK; Davidson C; Clancy JP
    Am J Physiol Lung Cell Mol Physiol; 2018 Sep; 315(3):L456-L465. PubMed ID: 29877096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence.
    Scheid P; Kempster L; Griesenbach U; Davies JC; Dewar A; Weber PP; Colledge WH; Evans MJ; Geddes DM; Alton EW
    Eur Respir J; 2001 Jan; 17(1):27-35. PubMed ID: 11307750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation.
    Ortiz-Muñoz G; Yu MA; Lefrançais E; Mallavia B; Valet C; Tian JJ; Ranucci S; Wang KM; Liu Z; Kwaan N; Dawson D; Kleinhenz ME; Khasawneh FT; Haggie PM; Verkman AS; Looney MR
    J Clin Invest; 2020 Apr; 130(4):2041-2053. PubMed ID: 31961827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease.
    Puglia M; Landi C; Gagliardi A; Breslin L; Armini A; Brunetti J; Pini A; Bianchi L; Bini L
    J Proteomics; 2018 Jan; 170():28-42. PubMed ID: 28970102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis.
    Wagner CA; Ott M; Klingel K; Beck S; Melzig J; Friedrich B; Wild KN; Bröer S; Moschen I; Albers A; Waldegger S; Tümmler B; Egan ME; Geibel JP; Kandolf R; Lang F
    Cell Physiol Biochem; 2001; 11(4):209-18. PubMed ID: 11509829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator.
    Tirkos S; Newbigging S; Nguyen V; Keet M; Ackerley C; Kent G; Rozmahel RF
    Respir Res; 2006 Mar; 7(1):51. PubMed ID: 16571124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of Functional Responses in Human Primary Lung Cells as a Basis for Personalized Therapy for Cystic Fibrosis.
    Awatade NT; Uliyakina I; Farinha CM; Clarke LA; Mendes K; Solé A; Pastor J; Ramos MM; Amaral MD
    EBioMedicine; 2015; 2(2):147-53. PubMed ID: 26137539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoclastogenesis and sphingosine-1-phosphate secretion from human osteoclast precursor monocytes are modulated by the cystic fibrosis transmembrane conductance regulator.
    Jourdain ML; Sergheraert J; Braux J; Guillaume C; Gangloff SC; Hubert D; Velard F; Jacquot J
    Biochim Biophys Acta Mol Basis Dis; 2021 Mar; 1867(3):166010. PubMed ID: 33188942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis.
    Ruffin M; Voland M; Marie S; Bonora M; Blanchard E; Blouquit-Laye S; Naline E; Puyo P; Le Rouzic P; Guillot L; Corvol H; Clement A; Tabary O
    Biochim Biophys Acta; 2013 Dec; 1832(12):2340-51. PubMed ID: 24080196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The L441P mutation of cystic fibrosis transmembrane conductance regulator and its molecular pathogenic mechanisms in a Korean patient with cystic fibrosis.
    Gee HY; Kim CK; Kim SW; Lee JH; Kim JH; Kim KH; Lee MG
    J Korean Med Sci; 2010 Jan; 25(1):166-71. PubMed ID: 20052366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages.
    Tazi MF; Dakhlallah DA; Caution K; Gerber MM; Chang SW; Khalil H; Kopp BT; Ahmed AE; Krause K; Davis I; Marsh C; Lovett-Racke AE; Schlesinger LS; Cormet-Boyaka E; Amer AO
    Autophagy; 2016 Nov; 12(11):2026-2037. PubMed ID: 27541364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CF gene and cystic fibrosis transmembrane conductance regulator expression in autosomal dominant polycystic kidney disease.
    Persu A; Devuyst O; Lannoy N; Materne R; Brosnahan G; Gabow PA; Pirson Y; Verellen-Dumoulin C
    J Am Soc Nephrol; 2000 Dec; 11(12):2285-2296. PubMed ID: 11095651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.