BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 28759066)

  • 1. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Configurational changes of heme followed by cytochrome c folding reaction.
    Choi J; Cho DW; Tojo S; Fujitsuka M; Majima T
    Mol Biosyst; 2015 Jan; 11(1):218-22. PubMed ID: 25358103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodissociation of heme distal methionine in ferrous cytochrome C revealed by subpicosecond time-resolved resonance Raman spectroscopy.
    Cianetti S; Négrerie M; Vos MH; Martin JL; Kruglik SG
    J Am Chem Soc; 2004 Nov; 126(43):13932-3. PubMed ID: 15506748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligation and Reactivity of Methionine-Oxidized Cytochrome c.
    Zhong F; Pletneva EV
    Inorg Chem; 2018 May; 57(10):5754-5766. PubMed ID: 29708337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region.
    Tomášková N; Varhač R; Lysáková V; Musatov A; Sedlák E
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1073-1083. PubMed ID: 30282605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of the low-spin Fe(III)-NO(radical) intermediate state during rebinding of NO to photodeligated ferric cytochrome c.
    Park J; Lee T; Lim M
    J Phys Chem B; 2013 Oct; 117(40):12039-50. PubMed ID: 24041332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met-heme iron bond.
    Wang Z; Ando Y; Nugraheni AD; Ren C; Nagao S; Hirota S
    Mol Biosyst; 2014 Dec; 10(12):3130-7. PubMed ID: 25224641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast proteinquake dynamics in cytochrome c.
    Zang C; Stevens JA; Link JJ; Guo L; Wang L; Zhong D
    J Am Chem Soc; 2009 Mar; 131(8):2846-52. PubMed ID: 19203189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420.
    Wells AV; Li P; Champion PM; Martinis SA; Sligar SG
    Biochemistry; 1992 May; 31(18):4384-93. PubMed ID: 1581294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of methionine80 heme coordination on domain swapping of cytochrome c.
    Hirota S; Yamashiro N; Wang Z; Nagao S
    J Biol Inorg Chem; 2017 Jul; 22(5):705-712. PubMed ID: 28246923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman Studies on Heme Ligand Stretching Modes in Methionine80-Depleted Cytochrome
    Zhang M; Tai H; Yanagisawa S; Yamanaka M; Ogura T; Hirota S
    J Phys Chem B; 2023 Mar; 127(11):2441-2449. PubMed ID: 36919258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Picosecond binding of the His ligand to four-coordinate heme in cytochrome c': a one-way gate for releasing proximal NO.
    Yoo BK; Lamarre I; Martin JL; Andrew CR; Negrerie M
    J Am Chem Soc; 2013 Feb; 135(8):3248-54. PubMed ID: 23373628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c.
    Gu J; Shin DW; Pletneva EV
    Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic characterization of five- and six-coordinate ferrous-NO heme complexes. Evidence for heme Fe-proximal cysteinate bond cleavage in the ferrous-NO adducts of the Trp-409Tyr/Phe proximal environment mutants of neuronal nitric oxide synthase.
    Voegtle HL; Sono M; Adak S; Pond AE; Tomita T; Perera R; Goodin DB; Ikeda-Saito M; Stuehr DJ; Dawson JH
    Biochemistry; 2003 Mar; 42(8):2475-84. PubMed ID: 12600215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of heme iron coordination and protein structure in the dynamics and geminate rebinding of nitric oxide to the H93G myoglobin mutant: implications for nitric oxide sensors.
    Negrerie M; Kruglik SG; Lambry JC; Vos MH; Martin JL; Franzen S
    J Biol Chem; 2006 Apr; 281(15):10389-98. PubMed ID: 16476730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.