These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28759102)

  • 1. A biaxial strain-based expansion mechanism for auxetic stent deployment.
    Bukhari F; Ansari U; Najabat Ali M; Akhtar H; Asif S; Mohammad U; Mir M
    J Appl Biomater Funct Mater; 2017 Jul; 15(3):e196-e205. PubMed ID: 28759102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxetic oesophageal stents: structure and mechanical properties.
    Ali MN; Busfield JJ; Rehman IU
    J Mater Sci Mater Med; 2014 Feb; 25(2):527-53. PubMed ID: 24142121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxetic coronary stent endoprosthesis: fabrication and structural analysis.
    Amin F; Ali MN; Ansari U; Mir M; Minhas MA; Shahid W
    J Appl Biomater Funct Mater; 2015 Jul; 13(2):e127-35. PubMed ID: 25363078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyses and design of expansion mechanisms of balloon expandable vascular stents.
    Douglas GR; Phani AS; Gagnon J
    J Biomech; 2014 Apr; 47(6):1438-46. PubMed ID: 24548335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element methods to analyze helical stent expansion.
    Paryab N; Cronin DS; Lee-Sullivan P
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):339-52. PubMed ID: 24123985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Finite element analysis of the expansion behavior of coronary stents].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1258-62, 1266. PubMed ID: 17228721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Self-Expanding Auxetic Stents Using Topology Optimization.
    Xue H; Luo Z; Brown T; Beier S
    Front Bioeng Biotechnol; 2020; 8():736. PubMed ID: 32766219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element comparison of performance related characteristics of balloon expandable stents.
    Donnelly EW; Bruzzi MS; Connolley T; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):103-10. PubMed ID: 18651276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent.
    García A; Peña E; Martínez MA
    J Mech Behav Biomed Mater; 2012 Jun; 10():166-75. PubMed ID: 22520428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation.
    Schiavone A; Zhao LG; Abdel-Wahab AA
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering assessment of the longitudinal compression behaviour of contemporary coronary stents.
    Prabhu S; Schikorr T; Mahmoud T; Jacobs J; Potgieter A; Simonton C
    EuroIntervention; 2012 Jun; 8(2):275-81. PubMed ID: 22057097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the expansive deformation of a bioresorbable polymer fiber stent.
    Welch T; Eberhart RC; Chuong CJ
    Ann Biomed Eng; 2008 May; 36(5):742-51. PubMed ID: 18264765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis.
    Ali MN; Rehman IU
    J Mater Sci Mater Med; 2011 Nov; 22(11):2573-81. PubMed ID: 21894537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial force measurements in carotid stents: influence of stent design and length of the lesion.
    Voûte MT; Hendriks JM; van Laanen JH; Pattynama PM; Muhs BE; Poldermans D; Verhagen HJ
    J Vasc Interv Radiol; 2011 May; 22(5):661-6. PubMed ID: 21514520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method.
    Wang WQ; Liang DK; Yang DZ; Qi M
    J Biomech; 2006; 39(1):21-32. PubMed ID: 16271584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A methodology for the customized design of colonic stents based on a parametric model.
    Puértolas S; Navallas D; Herrera A; López E; Millastre J; Ibarz E; Gabarre S; Puértolas JA; Gracia L
    J Mech Behav Biomed Mater; 2017 Jul; 71():250-261. PubMed ID: 28365542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stent longitudinal integrity bench insights into a clinical problem.
    Ormiston JA; Webber B; Webster MW
    JACC Cardiovasc Interv; 2011 Dec; 4(12):1310-7. PubMed ID: 22136972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.