BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28759438)

  • 21. Microwave assistant rapid synthesis MCM-41-NH
    He Y; Zhang L; An X; Han C; Luo Y
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31463-31477. PubMed ID: 31478175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Preparation of a composite coagulant from fly ash and its application in domestic wastewater treatment].
    Li YQ; Hu K; Zhao QL; Tang F; Liu ZG; Cui FY
    Huan Jing Ke Xue; 2007 Nov; 28(11):2507-14. PubMed ID: 18290474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.
    Zhang J; Ding T; Zhang Z; Xu L; Zhang C
    PLoS One; 2015; 10(4):e0123395. PubMed ID: 25837498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.
    Zhang T; Ding L; Ren H; Xiong X
    Water Res; 2009 Dec; 43(20):5209-15. PubMed ID: 19850316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of effluent organic matter from different coking wastewater treatment plants.
    Yang W; Wang J; Hua M; Zhang Y; Shi X
    Chemosphere; 2018 Jul; 203():68-75. PubMed ID: 29605750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Coking Wastewater on the Growth of Five Wetland Plant Species.
    Xiang Y; Xiang Y; Wang L; Jiao Y
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):265-270. PubMed ID: 29147739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.
    Ma X; Wang X; Liu Y; Gao J; Wang Y
    Ecotoxicol Environ Saf; 2017 Apr; 138():163-169. PubMed ID: 28049073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective adsorption and bioavailability relevance of the cyclic organics in anaerobic pretreated coal pyrolysis wastewater by lignite activated coke.
    Zheng M; Han Y; Xu C; Zhang Z; Han H
    Sci Total Environ; 2019 Feb; 653():64-73. PubMed ID: 30404070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of porous sulfonated carbon as a potential adsorbent for phenol wastewater.
    Prabhu A; Al Shoaibi A; Srinivasakannan C
    Water Sci Technol; 2015; 72(9):1594-600. PubMed ID: 26524451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface properties and adsorption characteristics to methylene blue and iodine of adsorbents from sludge.
    Deng LY; Xu GR; Li GB
    Water Sci Technol; 2010; 62(8):1705-12. PubMed ID: 20962384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of a polymerization-based electrochemically assisted persulfate process on a real coking wastewater treatment.
    Yang S; Cui Y; Liu Z; Peng C; Sun S; Yang J; Wang M
    J Environ Sci (China); 2024 Dec; 146():149-162. PubMed ID: 38969443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Feasibility Study of Ammonia Recovery from Coking Wastewater by Coupled Operation of a Membrane Contactor and Membrane Distillation.
    Lin PH; Horng RY; Hsu SF; Chen SS; Ho CH
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29510505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superheated water pretreatment combined with CO
    Xiao J; Yu B; Zhong Q; Yuan J; Yao Z; Zhang L
    Water Sci Technol; 2017 Oct; 76(7-8):1687-1696. PubMed ID: 28991785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor.
    Zhang C; Lin H; Chen J; Zhang W
    Environ Technol; 2013; 34(13-16):2371-6. PubMed ID: 24350493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of magnetite-based nanocomposites for effective removal of brilliant green dye from wastewater.
    Imran M; Islam AU; Tariq MA; Siddique MH; Shah NS; Khan ZUH; Amjad M; Din SU; Shah GM; Naeem MA; Nadeem M; Nawaz M; Rizwan M
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24489-24502. PubMed ID: 31230248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced treatment of coking wastewater: Recent advances and prospects.
    Wang J; Wang S; Hu C
    Chemosphere; 2024 Feb; 349():140923. PubMed ID: 38092162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.
    Xing R; Zheng Z; Wen D
    J Environ Sci (China); 2015 Mar; 29():45-50. PubMed ID: 25766012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparing coal slurry from coking wastewater to achieve resource utilization: Slurrying mechanism of coking wastewater-coal slurry.
    Wang R; Ma Q; Ye X; Li C; Zhao Z
    Sci Total Environ; 2019 Feb; 650(Pt 2):1678-1687. PubMed ID: 30273727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopic study on transformations of dissolved organic matter in coal-to-liquids wastewater under integrated chemical oxidation and biological treatment process.
    Peng S; He X; Pan H
    J Environ Sci (China); 2018 Aug; 70():206-216. PubMed ID: 30037407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.