These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28759472)

  • 21. Role of macrophage scavenger receptors in atherosclerosis.
    Kzhyshkowska J; Neyen C; Gordon S
    Immunobiology; 2012 May; 217(5):492-502. PubMed ID: 22437077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monocyte fate in atherosclerosis.
    Hilgendorf I; Swirski FK; Robbins CS
    Arterioscler Thromb Vasc Biol; 2015 Feb; 35(2):272-9. PubMed ID: 25538208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis.
    Karunakaran D; Geoffrion M; Wei L; Gan W; Richards L; Shangari P; DeKemp EM; Beanlands RA; Perisic L; Maegdefessel L; Hedin U; Sad S; Guo L; Kolodgie FD; Virmani R; Ruddy T; Rayner KJ
    Sci Adv; 2016 Jul; 2(7):e1600224. PubMed ID: 27532042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis.
    Bobryshev YV; Ivanova EA; Chistiakov DA; Nikiforov NG; Orekhov AN
    Biomed Res Int; 2016; 2016():9582430. PubMed ID: 27493969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The macrophage-TCRαβ is a cholesterol-responsive combinatorial immune receptor and implicated in atherosclerosis.
    Fuchs T; Puellmann K; Emmert A; Fleig J; Oniga S; Laird R; Heida NM; Schäfer K; Neumaier M; Beham AW; Kaminski WE
    Biochem Biophys Res Commun; 2015 Jan; 456(1):59-65. PubMed ID: 25446098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional and epigenetic regulation of macrophages in atherosclerosis.
    Kuznetsova T; Prange KHM; Glass CK; de Winther MPJ
    Nat Rev Cardiol; 2020 Apr; 17(4):216-228. PubMed ID: 31578516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis.
    He S; Wu C; Xiao J; Li D; Sun Z; Li M
    Scand J Immunol; 2018 Apr; 87(4):e12648. PubMed ID: 29465752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macrophage metabolism in atherosclerosis.
    Bories GFP; Leitinger N
    FEBS Lett; 2017 Oct; 591(19):3042-3060. PubMed ID: 28796886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pioglitazone-Incorporated Nanoparticles Prevent Plaque Destabilization and Rupture by Regulating Monocyte/Macrophage Differentiation in ApoE-/- Mice.
    Nakashiro S; Matoba T; Umezu R; Koga J; Tokutome M; Katsuki S; Nakano K; Sunagawa K; Egashira K
    Arterioscler Thromb Vasc Biol; 2016 Mar; 36(3):491-500. PubMed ID: 26821947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The monocyte/macrophage as a therapeutic target in atherosclerosis.
    Saha P; Modarai B; Humphries J; Mattock K; Waltham M; Burnand KG; Smith A
    Curr Opin Pharmacol; 2009 Apr; 9(2):109-18. PubMed ID: 19230773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HDL does not influence the polarization of human monocytes toward an alternative phenotype.
    Colin S; Fanchon M; Belloy L; Bochem AE; Copin C; Derudas B; Stroes ES; Hovingh GK; Kuivenhoven JA; Dallinga-Thie GM; Staels B; Chinetti-Gbaguidi G
    Int J Cardiol; 2014 Mar; 172(1):179-84. PubMed ID: 24456889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of splenic monocytes in atherosclerosis.
    Potteaux S; Ait-Oufella H; Mallat Z
    Curr Opin Lipidol; 2015 Oct; 26(5):457-63. PubMed ID: 26270807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis.
    de Gaetano M; Crean D; Barry M; Belton O
    Front Immunol; 2016; 7():275. PubMed ID: 27486460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macrophage Phenotype and Function in Different Stages of Atherosclerosis.
    Tabas I; Bornfeldt KE
    Circ Res; 2016 Feb; 118(4):653-67. PubMed ID: 26892964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency.
    Tabas I
    Arterioscler Thromb Vasc Biol; 2005 Nov; 25(11):2255-64. PubMed ID: 16141399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis.
    Gibson MS; Domingues N; Vieira OV
    Front Physiol; 2018; 9():654. PubMed ID: 29997514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The impact of splenectomy on human coronary artery atherosclerosis and vascular macrophage distribution.
    Li Y; Stone JR
    Cardiovasc Pathol; 2016; 25(6):453-460. PubMed ID: 27614166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Foam cells and the pathogenesis of kidney disease.
    Eom M; Hudkins KL; Alpers CE
    Curr Opin Nephrol Hypertens; 2015 May; 24(3):245-51. PubMed ID: 25887903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function.
    Han X; Boisvert WA
    Thromb Haemost; 2015 Mar; 113(3):505-12. PubMed ID: 25373619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrophage subsets in atherosclerosis.
    Chinetti-Gbaguidi G; Colin S; Staels B
    Nat Rev Cardiol; 2015 Jan; 12(1):10-7. PubMed ID: 25367649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.