These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28759711)

  • 21. NetFCM: a semi-automated web-based method for flow cytometry data analysis.
    Frederiksen J; Buggert M; Karlsson AC; Lund O
    Cytometry A; 2014 Nov; 85(11):969-77. PubMed ID: 25044796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated gating of flow cytometry data via robust model-based clustering.
    Lo K; Brinkman RR; Gottardo R
    Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid cell population identification in flow cytometry data.
    Aghaeepour N; Nikolic R; Hoos HH; Brinkman RR
    Cytometry A; 2011 Jan; 79(1):6-13. PubMed ID: 21182178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward deterministic and semiautomated SPADE analysis.
    Qiu P
    Cytometry A; 2017 Mar; 91(3):281-289. PubMed ID: 28234411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The end of gating? An introduction to automated analysis of high dimensional cytometry data.
    Mair F; Hartmann FJ; Mrdjen D; Tosevski V; Krieg C; Becher B
    Eur J Immunol; 2016 Jan; 46(1):34-43. PubMed ID: 26548301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. gEM/GANN: A multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data.
    Tong DL; Ball GR; Pockley AG
    Cytometry A; 2015 Jul; 87(7):616-23. PubMed ID: 25572884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CytoML for cross-platform cytometry data sharing.
    Finak G; Jiang W; Gottardo R
    Cytometry A; 2018 Dec; 93(12):1189-1196. PubMed ID: 30551257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implementation and Validation of an Automated Flow Cytometry Analysis Pipeline for Human Immune Profiling.
    Conrad VK; Dubay CJ; Malek M; Brinkman RR; Koguchi Y; Redmond WL
    Cytometry A; 2019 Feb; 95(2):183-191. PubMed ID: 30570217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-parametric cytometry from a complex cellular sample: Improvements and limits of manual versus computational-based interactive analyses.
    Gondois-Rey F; Granjeaud S; Rouillier P; Rioualen C; Bidaut G; Olive D
    Cytometry A; 2016 May; 89(5):480-90. PubMed ID: 27059253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow cytometry data analysis: Recent tools and algorithms.
    Montante S; Brinkman RR
    Int J Lab Hematol; 2019 May; 41 Suppl 1():56-62. PubMed ID: 31069980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gating mass cytometry data by deep learning.
    Li H; Shaham U; Stanton KP; Yao Y; Montgomery RR; Kluger Y
    Bioinformatics; 2017 Nov; 33(21):3423-3430. PubMed ID: 29036374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data.
    Finak G; Jiang W; Pardo J; Asare A; Gottardo R
    BMC Bioinformatics; 2012 Sep; 13():252. PubMed ID: 23020243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unimodal regression using Bernstein-Schoenberg splines and penalties.
    Köllmann C; Bornkamp B; Ickstadt K
    Biometrics; 2014 Dec; 70(4):783-93. PubMed ID: 24975523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computationally efficient multidimensional analysis of complex flow cytometry data using second order polynomial histograms.
    Zaunders J; Jing J; Leipold M; Maecker H; Kelleher AD; Koch I
    Cytometry A; 2016 Jan; 89(1):44-58. PubMed ID: 26097104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unfold High-Dimensional Clouds for Exhaustive Gating of Flow Cytometry Data.
    Qiu P
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1045-51. PubMed ID: 26357042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure.
    Lee SX; McLachlan GJ; Pyne S
    Cytometry A; 2016 Jan; 89(1):30-43. PubMed ID: 26492316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On extensions of k-means clustering for automated gating of flow cytometry data.
    Luta G
    Cytometry A; 2011 Jan; 79(1):3-5. PubMed ID: 21182177
    [No Abstract]   [Full Text] [Related]  

  • 38. Analysis of High-Dimensional Phenotype Data Generated by Mass Cytometry or High-Dimensional Flow Cytometry.
    Cirovic B; Katzmarski N; Schlitzer A
    Methods Mol Biol; 2019; 1989():281-294. PubMed ID: 31077112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation.
    Mosmann TR; Naim I; Rebhahn J; Datta S; Cavenaugh JS; Weaver JM; Sharma G
    Cytometry A; 2014 May; 85(5):422-33. PubMed ID: 24532172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computational framework to emulate the human perspective in flow cytometric data analysis.
    Ray S; Pyne S
    PLoS One; 2012; 7(5):e35693. PubMed ID: 22563466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.