BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

772 related articles for article (PubMed ID: 28759838)

  • 1. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure.
    Lu Y; Cheng L; Yang Z; Li J; Zhu H
    PLoS One; 2020; 15(9):e0238471. PubMed ID: 32870933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models.
    Ali D; Sen S
    Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Fluid Dynamics Study of the Effects of Surface Roughness on Permeability and Fluid Flow-Induced Wall Shear Stress in Scaffolds.
    Ali D; Sen S
    Ann Biomed Eng; 2018 Dec; 46(12):2023-2035. PubMed ID: 30030771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability.
    Foroughi AH; Razavi MJ
    Acta Biomater; 2022 Jul; 146():317-340. PubMed ID: 35533924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of sheet and network solid structures of similar TPMS scaffold architectures on permeability, wall shear stress, and velocity: A CFD analysis.
    Karaman D; Ghahramanzadeh Asl H
    Med Eng Phys; 2023 Aug; 118():104024. PubMed ID: 37536832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of porous scaffold deformation induced by medium perfusion.
    Podichetty JT; Madihally SV
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):737-48. PubMed ID: 24259467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion.
    Zhang X; Tiainen H; Haugen HJ
    Med Biol Eng Comput; 2019 Jan; 57(1):311-324. PubMed ID: 30117067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
    Zhao F; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2016 Jun; 15(3):561-77. PubMed ID: 26224148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLA-based nature-inspired architecture for bone scaffolds: A finite element analysis.
    Mohol SS; Kumar M; Sharma V
    Comput Biol Med; 2023 Sep; 163():107163. PubMed ID: 37329619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element study of scaffold architecture design and culture conditions for tissue engineering.
    Olivares AL; Marsal E; Planell JA; Lacroix D
    Biomaterials; 2009 Oct; 30(30):6142-9. PubMed ID: 19674779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting.
    Ma S; Tang Q; Feng Q; Song J; Han X; Guo F
    J Mech Behav Biomed Mater; 2019 May; 93():158-169. PubMed ID: 30798182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Design of new gradient scaffolds based on triply periodic minimal surfaces and study on its mechanical, permeability and tissue differentiation characteristics].
    Liu Z; Gong H; Gao J; Liu Z; Zou S; Tian S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Oct; 38(5):960-968. PubMed ID: 34713664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Properties Directionality and Permeability of Fused Triply Periodic Minimal Surface Porous Scaffolds Fabricated by Selective Laser Melting.
    Ye J; He W; Wei T; Sun C; Zeng S
    ACS Biomater Sci Eng; 2023 Aug; 9(8):5084-5096. PubMed ID: 37489944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds.
    Arjunan A; Demetriou M; Baroutaji A; Wang C
    J Mech Behav Biomed Mater; 2020 Feb; 102():103517. PubMed ID: 31877520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive properties and failure behavior of photocast hydroxyapatite gyroid scaffolds vary with porosity.
    Isaacson N; Lopez-Ambrosio K; Chubb L; Waanders N; Hoffmann E; Witt C; James S; Prawel DA
    J Biomater Appl; 2022 Jul; 37(1):55-76. PubMed ID: 35331033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.