These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 2875995)
1. Effects of permeant buffers on the initiation of photosynchronous phosphorylation and postillumination phosphorylation in chloroplasts. Horner RD; Moudrianakis EN J Biol Chem; 1986 Oct; 261(29):13408-14. PubMed ID: 2875995 [TBL] [Abstract][Full Text] [Related]
2. The effect of permeant buffers on initial ATP synthesis by chloroplasts using rapid mix-quench techniques. Horner RD; Moudrianakis EN J Biol Chem; 1983 Oct; 258(19):11643-7. PubMed ID: 6619134 [TBL] [Abstract][Full Text] [Related]
3. Effects of permeant buffers on the initial time course of photophosphorylation and postillumination phosphorylation. Vinkler C; Avron M; Boyer PD J Biol Chem; 1980 Mar; 255(6):2263-6. PubMed ID: 7358668 [TBL] [Abstract][Full Text] [Related]
4. Photophosphorylation as a function of illumination time. II. Effects of permeant buffers. Ort DR; Dilley RA; Good NE Biochim Biophys Acta; 1976 Oct; 449(1):108-24. PubMed ID: 10008 [TBL] [Abstract][Full Text] [Related]
5. The onset of photophosphorylation correlates with the rise in transmembrane electrochemical proton gradients. Davenport JW; McCarty RE Biochim Biophys Acta; 1980 Feb; 589(2):353-7. PubMed ID: 7356990 [TBL] [Abstract][Full Text] [Related]
6. Evidence that localized energy coupling in thylakoids can continue beyond the energetic threshold onset into steady illumination. Renganathan M; Pan RS; Ewy RG; Theg SM; Allnutt FC; Dilley RA Biochim Biophys Acta; 1991 Aug; 1059(1):16-27. PubMed ID: 1651763 [TBL] [Abstract][Full Text] [Related]
7. ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. II. Two modes of post-illumination phosphorylation driven by either delocalized or localized proton gradient coupling. Beard WA; Chiang G; Dilley RA J Bioenerg Biomembr; 1988 Feb; 20(1):107-28. PubMed ID: 3346205 [TBL] [Abstract][Full Text] [Related]
8. Photophosphorylation as a function of illumination time. I. Effects of permeant cations and permeant anions. Ort DR; Dilley RA Biochim Biophys Acta; 1976 Oct; 449(1):95-107. PubMed ID: 61766 [TBL] [Abstract][Full Text] [Related]
9. Protons, the thylakoid membrane, and the chloroplast ATP synthase. Junge W Ann N Y Acad Sci; 1989; 574():268-86. PubMed ID: 2483874 [TBL] [Abstract][Full Text] [Related]
10. ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. I. An assay using luciferin-luciferase luminescence. Beard WA; Dilley RA J Bioenerg Biomembr; 1988 Feb; 20(1):85-106. PubMed ID: 3346207 [TBL] [Abstract][Full Text] [Related]
11. ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. III. Characterization of the ATP formation onset lag and post-illumination phosphorylation for thylakoids exhibiting localized or bulk-phase delocalized energy coupling. Beard WA; Dilley RA J Bioenerg Biomembr; 1988 Feb; 20(1):129-54. PubMed ID: 3346206 [TBL] [Abstract][Full Text] [Related]
12. Effect of pyridine homologues on proton flux through the CF0 . CF1 complex and photophosphorylation in chloroplasts. Ho YK; Wang JH J Bioenerg Biomembr; 1982 Apr; 14(2):97-113. PubMed ID: 6284734 [TBL] [Abstract][Full Text] [Related]
13. Probes of initial phosphorylation events in ATP synthesis by chloroplasts. Smith DJ; Stokes BO; Boyer PD J Biol Chem; 1976 Jul; 251(14):4165-71. PubMed ID: 932027 [TBL] [Abstract][Full Text] [Related]
14. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields. Leiser M; Gromet-Elhanan Z J Biol Chem; 1975 Jan; 250(1):84-9. PubMed ID: 237896 [TBL] [Abstract][Full Text] [Related]
15. Protons in the thylakoid membrane-sequestered domains can directly pass through the coupling factor during ATP synthesis in flashing light. Theg SM; Chiang G; Dilley RA J Biol Chem; 1988 Jan; 263(2):673-81. PubMed ID: 2891700 [TBL] [Abstract][Full Text] [Related]
16. Millisecond kinetics of ATP synthesis driven by externally imposed electrochemical potentials in chloroplasts. Horner RD; Moudrianakis EN J Biol Chem; 1985 May; 260(10):6153-9. PubMed ID: 2987216 [TBL] [Abstract][Full Text] [Related]
17. Control of proton translocation induced by ATPase activity in chloroplasts. Carmeli C; Lifshitz Y; Gepshtein A Biochim Biophys Acta; 1975 Feb; 376(2):249-58. PubMed ID: 234748 [TBL] [Abstract][Full Text] [Related]
18. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid. Lübben M; Schäfer G J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523 [TBL] [Abstract][Full Text] [Related]
19. Evidence that the intrinsic membrane protein LHCII in thylakoids is necessary for maintaining localized delta mu H+ energy coupling. Renganathan M; Dilley RA J Bioenerg Biomembr; 1994 Feb; 26(1):117-25. PubMed ID: 8027017 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and hydrolysis of ATP by intact chloroplasts under flash illumination and in darkness. Inoue Y; Kobayashi Y; Shibata K; Heber U Biochim Biophys Acta; 1978 Oct; 504(1):142-52. PubMed ID: 30476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]