BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2876045)

  • 1. Effect of acivicin on glutamine transport by rat renal brush border membrane vesicles.
    Sastrasinh S; Sastrasinh M
    J Lab Clin Med; 1986 Oct; 108(4):301-8. PubMed ID: 2876045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of azaserine on glutamine uptake by rat renal brush-border membranes.
    Hsu BY; Marshall CM; McNamara PD; Segal S
    Biochem J; 1980 Oct; 192(1):119-26. PubMed ID: 6118132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of resistance of a variant of P388 leukemia to L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin).
    Jayaram HN; Ardalan B; Deas M; Johnson RK
    Cancer Res; 1985 Jan; 45(1):207-12. PubMed ID: 2578092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct evidence for the role of the membrane potential in glutathione transport by renal brush-border membranes.
    Inoue M; Morino Y
    J Biol Chem; 1985 Jan; 260(1):326-31. PubMed ID: 2856921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of acivicin on glutamine transport by renal basolateral membrane vesicles.
    Sastrasinh M; Sastrasinh S
    Contrib Nephrol; 1988; 63():43-8. PubMed ID: 3191714
    [No Abstract]   [Full Text] [Related]  

  • 6. Transport of glutamine by rat kidney brush-border membrane vesicles.
    McFarlane-Anderson N; Alleyne GA
    Biochem J; 1979 Aug; 182(2):295-300. PubMed ID: 41516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of gamma-glutamyltranspeptidase in exocrine pancreatic amino acid transport.
    Sastre J; Sweiry JH; Doolabh K; ViƱa J; Mann GE
    Biochim Biophys Acta; 1991 Jun; 1065(2):213-6. PubMed ID: 1676299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of a role of gamma-glutamyl transpeptidase in the transport of amino acids by rat renal brushborder membrane vesicles.
    Hsu BY; Foreman JW; Corcoran SM; Ginkinger K; Segal S
    J Membr Biol; 1984; 80(2):167-73. PubMed ID: 6148423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo inactivation by acivicin of carbamoyl-phosphate synthetase II in rat hepatoma.
    Aoki T; Sebolt J; Weber G
    Biochem Pharmacol; 1982 Mar; 31(6):927-32. PubMed ID: 7082374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and metabolism of glutamine in cultured kidney cells.
    Dass PD; Wu MC
    Biochim Biophys Acta; 1985 Apr; 845(1):94-100. PubMed ID: 2858223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex.
    Yusufi AN; Murayama N; Keller MJ; Dousa TP
    Endocrinology; 1985 Jun; 116(6):2438-49. PubMed ID: 2986951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of diabetes in the spontaneously diabetic BB rat by the glutamine antimetabolite acivicin.
    Misra M; Duguid WP; Marliss EB
    Can J Physiol Pharmacol; 1996 Feb; 74(2):163-72. PubMed ID: 8723029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocytoid differentiation of freshly isolated human myeloid leukemia cells and HL-60 cells induced by the glutamine antagonist acivicin.
    Nichols KE; Chitneni SR; Moore JO; Weinberg JB
    Blood; 1989 Oct; 74(5):1728-37. PubMed ID: 2790198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal brush border glutamine transport: comparison between in situ and isolate membrane vesicle uptake.
    Harrison D; Joshi S; Carter P; Welbourne TC
    Biochim Biophys Acta; 1987 Sep; 902(3):301-6. PubMed ID: 2887204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of acivicin in the determination of rate constants for turnover of rat renal gamma-glutamyltranspeptidase.
    Capraro MA; Hughey RP
    J Biol Chem; 1985 Mar; 260(6):3408-12. PubMed ID: 2857721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. gamma-L-glutamyl-L-DOPA inhibits Na(+)-phosphate cotransport across renal brush border membranes and increases renal excretion of phosphate.
    de Toledo FG; Thompson MA; Bolliger C; Tyce GM; Dousa TP
    Kidney Int; 1999 May; 55(5):1832-42. PubMed ID: 10231445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a single common Na+-dependent transport system for alanine, glutamine, leucine and phenylalanine in brush-border membrane vesicles from bovine kidney.
    Lynch AM; McGivan JD
    Biochim Biophys Acta; 1987 May; 899(2):176-84. PubMed ID: 3580363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gamma-aminobutyric acid-specific transport mechanism in mammalian kidney.
    Goodyer PR; Rozen R; Scriver CR
    Biochim Biophys Acta; 1985 Aug; 818(1):45-54. PubMed ID: 3925996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma glutamyltransferase contribution to renal ammoniagenesis in vivo.
    Welbourne TC; Dass PD
    Pflugers Arch; 1988 May; 411(5):573-8. PubMed ID: 2898749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane.
    Zelikovic I; Budreau-Patters A
    Mol Genet Metab; 1999 Jul; 67(3):236-47. PubMed ID: 10381331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.