These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2876050)

  • 21. Effect of graded corticosterone treatment on aging-related markers of oxidative stress in rat liver mitochondria.
    Caro P; Gómez J; Sanz A; Portero-Otín M; Pamplona R; Barja G
    Biogerontology; 2007 Feb; 8(1):1-11. PubMed ID: 16823605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chlorphentermine-induced biochemical alterations in mitochondrial membranes.
    Zychlinski L; Montgomery MR
    J Pharmacol Exp Ther; 1985 Apr; 233(1):39-44. PubMed ID: 3981460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial function following chronic ethanol treatment: effect of diet.
    Wahid S; Khanna JM; Carmichael FJ; Israel Y
    Res Commun Chem Pathol Pharmacol; 1980 Dec; 30(3):477-91. PubMed ID: 7196064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Restricted redox oscillation in oxidative phosphorylation in jaundiced rat liver mitochondria and its relation to calcium ion.
    Chang YJ; Iwata S; Terada Y; Ozawa K
    J Surg Res; 1996 Dec; 66(2):91-9. PubMed ID: 9024818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide, a physiological modulator of mitochondrial function.
    Okada S; Takehara Y; Yabuki M; Yoshioka T; Yasuda T; Inoue M; Utsumi K
    Physiol Chem Phys Med NMR; 1996; 28(2):69-82. PubMed ID: 8946766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement.
    Paim BA; Velho JA; Castilho RF; Oliveira HC; Vercesi AE
    Free Radic Biol Med; 2008 Feb; 44(3):444-51. PubMed ID: 17991444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of oxidative phosphorylation in the inner membrane of rat liver mitochondria by calcium ions.
    Evtodienko YV; Azarashvili TS; Teplova VV; Odinokova IV; Saris N
    Biochemistry (Mosc); 2000 Sep; 65(9):1023-6. PubMed ID: 11042493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decreasing urea∶trimethylamine N-oxide ratios with depth in chondrichthyes: a physiological depth limit?
    Laxson CJ; Condon NE; Drazen JC; Yancey PH
    Physiol Biochem Zool; 2011; 84(5):494-505. PubMed ID: 21897086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs.
    Forster RP; Goldstein L
    Am J Physiol; 1976 Apr; 230(4):925-31. PubMed ID: 1267026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of a renal urea transporter with reduced salinity in a marine elasmobranch, Raja erinacea.
    Morgan RL; Ballantyne JS; Wright PA
    J Exp Biol; 2003 Sep; 206(Pt 18):3285-92. PubMed ID: 12909709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of urea, trimethylamine oxide, and osmolality on respiration and citrulline synthesis by isolated hepatic mitochondria from Squalus acanthias.
    Anderson PM
    Comp Biochem Physiol B; 1986; 85(4):783-8. PubMed ID: 3816152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis.
    Baskakov I; Wang A; Bolen DW
    Biophys J; 1998 May; 74(5):2666-73. PubMed ID: 9591690
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic capacity does not predict elasmobranchs' ability to maintain trimethylamine oxide without a dietary contribution.
    Bockus AB; Seibel BA
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Mar; 217():35-42. PubMed ID: 29248570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dogmas and controversies in the handling of nitrogenous wastes: osmoregulation during early embryonic development in the marine little skate Raja erinacea; response to changes in external salinity.
    Steele SL; Yancey PH; Wright PA
    J Exp Biol; 2004 May; 207(Pt 12):2021-31. PubMed ID: 15143136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Betaine-induced stimulation of respiration at high osmolarities in a halotolerant bacterium.
    Shkedy-Vinkler C; Avi-Dor Y
    Biochem J; 1975 Aug; 150(2):219-26. PubMed ID: 1180915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osmolyte Adjustments as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates (Amblyraja hyperborea) along a Depth Gradient.
    Yancey PH; Speers-Roesch B; Atchinson S; Reist JD; Majewski AR; Treberg JR
    Physiol Biochem Zool; 2018; 91(2):788-796. PubMed ID: 29315031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the non-linear osmotic pressure-volume relationship in mitochondria and entry of sucrose into the matrix space during centrifugation.
    Sambasivarao D; Sitaramam V
    Biochim Biophys Acta; 1983 Feb; 722(2):256-70. PubMed ID: 6838866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ROLE OF UREA AND METHYLAMINES IN BUOYANCY OF ELASMOBRANCHS.
    Withers P; Hefter G; Pang TS
    J Exp Biol; 1994 Mar; 188(1):175-89. PubMed ID: 9317582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The response of plant mitochondria to media of high solute content.
    Campbell LC; Raison JK; Brady CJ
    J Bioenerg Biomembr; 1976 Jun; 8(3):121-9. PubMed ID: 972140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.