BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 28760827)

  • 1. Copper homeostasis networks in the bacterium
    Quintana J; Novoa-Aponte L; Argüello JM
    J Biol Chem; 2017 Sep; 292(38):15691-15704. PubMed ID: 28760827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism.
    Novoa-Aponte L; Xu C; Soncini FC; Argüello JM
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33361129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interplay of the metallosensor CueR with two distinct CopZ chaperones defines copper homeostasis in
    Novoa-Aponte L; Ramírez D; Argüello JM
    J Biol Chem; 2019 Mar; 294(13):4934-4945. PubMed ID: 30718281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa.
    Raimunda D; Padilla-Benavides T; Vogt S; Boutigny S; Tomkinson KN; Finney LA; Argüello JM
    Metallomics; 2013 Feb; 5(2):144-51. PubMed ID: 23354150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An important role for periplasmic storage in Pseudomonas aeruginosa copper homeostasis revealed by a combined experimental and computational modeling study.
    Parmar JH; Quintana J; Ramírez D; Laubenbacher R; Argüello JM; Mendes P
    Mol Microbiol; 2018 Nov; 110(3):357-369. PubMed ID: 30047562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa.
    Caille O; Rossier C; Perron K
    J Bacteriol; 2007 Jul; 189(13):4561-8. PubMed ID: 17449606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Understanding of the Copper Homeostasis in
    Hofmann L; Hirsch M; Ruthstein S
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa.
    González-Guerrero M; Raimunda D; Cheng X; Argüello JM
    Mol Microbiol; 2010 Dec; 78(5):1246-58. PubMed ID: 21091508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa.
    Teitzel GM; Geddie A; De Long SK; Kirisits MJ; Whiteley M; Parsek MR
    J Bacteriol; 2006 Oct; 188(20):7242-56. PubMed ID: 17015663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cu chaperone CopZ is required for Cu homeostasis in Rhodobacter capsulatus and influences cytochrome cbb
    Utz M; Andrei A; Milanov M; Trasnea PI; Marckmann D; Daldal F; Koch HG
    Mol Microbiol; 2019 Mar; 111(3):764-783. PubMed ID: 30582886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis.
    Pezza A; Pontel LB; López C; Soncini FC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11573-11578. PubMed ID: 27679850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper trafficking in the CsoR regulon of Streptomyces lividans.
    Chaplin AK; Tan BG; Vijgenboom E; Worrall JA
    Metallomics; 2015 Jan; 7(1):145-55. PubMed ID: 25409712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel.
    Gunasekera TS; Bowen LL; Zhou CE; Howard-Byerly SC; Foley WS; Striebich RC; Dugan LC; Ruiz ON
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314727
    [No Abstract]   [Full Text] [Related]  

  • 14. CopC protein from Pseudomonas fluorescens SBW25 features a conserved novel high-affinity Cu(II) binding site.
    Wijekoon CJ; Young TR; Wedd AG; Xiao Z
    Inorg Chem; 2015 Mar; 54(6):2950-9. PubMed ID: 25710712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The S2 Cu(i) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance.
    Fu Y; Bruce KE; Wu H; Giedroc DP
    Metallomics; 2016 Jan; 8(1):61-70. PubMed ID: 26346139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PtrA is a periplasmic protein involved in Cu tolerance in Pseudomonas aeruginosa.
    Elsen S; Ragno M; Attree I
    J Bacteriol; 2011 Jul; 193(13):3376-8. PubMed ID: 21531801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu
    Purohit R; Ross MO; Batelu S; Kusowski A; Stemmler TL; Hoffman BM; Rosenzweig AC
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2108-2113. PubMed ID: 29440418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnuA and zinc homeostasis in Pseudomonas aeruginosa.
    Pederick VG; Eijkelkamp BA; Begg SL; Ween MP; McAllister LJ; Paton JC; McDevitt CA
    Sci Rep; 2015 Aug; 5():13139. PubMed ID: 26290475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.