These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. Wang Y; San KY; Bennett GN J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1449-60. PubMed ID: 24048943 [TBL] [Abstract][Full Text] [Related]
6. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Servant P; Le Coq D; Aymerich S Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus. Purves J; Cockayne A; Moody PC; Morrissey JA Infect Immun; 2010 Dec; 78(12):5223-32. PubMed ID: 20876289 [TBL] [Abstract][Full Text] [Related]
8. Identification of Novel Spx Regulatory Pathways in Bacillus subtilis Uncovers a Close Relationship between the CtsR and Spx Regulons. Rojas-Tapias DF; Helmann JD J Bacteriol; 2019 Jul; 201(13):. PubMed ID: 30962353 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Toivari MH; Maaheimo H; Penttilä M; Ruohonen L Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. Wang G; Bai L; Wang Z; Shi T; Chen T; Zhao X World J Microbiol Biotechnol; 2014 Jun; 30(6):1893-900. PubMed ID: 24477882 [TBL] [Abstract][Full Text] [Related]
12. Glyceraldehyde-3-phosphate dehydrogenase subunits A and B are essential to maintain photosynthetic efficiency. Simkin AJ; Alqurashi M; Lopez-Calcagno PE; Headland LR; Raines CA Plant Physiol; 2023 Aug; 192(4):2989-3000. PubMed ID: 37099455 [TBL] [Abstract][Full Text] [Related]
13. The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in Lilge L; Reder A; Tippmann F; Morgenroth F; Grohmann J; Becher D; Riedel K; Völker U; Hecker M; Gerth U Front Microbiol; 2020; 11():900. PubMed ID: 32477307 [TBL] [Abstract][Full Text] [Related]
14. The C-terminal extension of glyceraldehyde-3-phosphate dehydrogenase subunit B acts as an autoinhibitory domain regulated by thioredoxins and nicotinamide adenine dinucleotide. Sparla F; Pupillo P; Trost P J Biol Chem; 2002 Nov; 277(47):44946-52. PubMed ID: 12270927 [TBL] [Abstract][Full Text] [Related]
15. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. Kirstein J; Dougan DA; Gerth U; Hecker M; Turgay K EMBO J; 2007 Apr; 26(8):2061-70. PubMed ID: 17380125 [TBL] [Abstract][Full Text] [Related]
16. Biochemical characterization of gapB-encoded erythrose 4-phosphate dehydrogenase of Escherichia coli K-12 and its possible role in pyridoxal 5'-phosphate biosynthesis. Zhao G; Pease AJ; Bharani N; Winkler ME J Bacteriol; 1995 May; 177(10):2804-12. PubMed ID: 7751290 [TBL] [Abstract][Full Text] [Related]
17. Arginine phosphorylation marks proteins for degradation by a Clp protease. Trentini DB; Suskiewicz MJ; Heuck A; Kurzbauer R; Deszcz L; Mechtler K; Clausen T Nature; 2016 Nov; 539(7627):48-53. PubMed ID: 27749819 [TBL] [Abstract][Full Text] [Related]
18. Expression of the glycolytic gapA operon in Bacillus subtilis: differential syntheses of proteins encoded by the operon. Meinken C; Blencke HM; Ludwig H; Stülke J Microbiology (Reading); 2003 Mar; 149(Pt 3):751-761. PubMed ID: 12634343 [TBL] [Abstract][Full Text] [Related]
19. Localization of general and regulatory proteolysis in Bacillus subtilis cells. Kirstein J; Strahl H; Molière N; Hamoen LW; Turgay K Mol Microbiol; 2008 Nov; 70(3):682-94. PubMed ID: 18786145 [TBL] [Abstract][Full Text] [Related]
20. GapB Is Involved in Biofilm Formation Dependent on LrgAB but Not the SinI/R System in Zhang J; Meng L; Zhang Y; Sang L; Liu Q; Zhao L; Liu F; Wang G Front Microbiol; 2020; 11():591926. PubMed ID: 33365021 [No Abstract] [Full Text] [Related] [Next] [New Search]