These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Transcription in the archaea: basal factors, regulation, and stress gene expression. Hickey AJ; Conway de Macario E; Macario AJ Crit Rev Biochem Mol Biol; 2002; 37(4):199-258. PubMed ID: 12236465 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in the understanding of archaeal transcription. Grohmann D; Werner F Curr Opin Microbiol; 2011 Jun; 14(3):328-34. PubMed ID: 21596617 [TBL] [Abstract][Full Text] [Related]
7. Determinants of transcription initiation by archaeal RNA polymerase. Bartlett MS Curr Opin Microbiol; 2005 Dec; 8(6):677-84. PubMed ID: 16249119 [TBL] [Abstract][Full Text] [Related]
8. Same same but different: The evolution of TBP in archaea and their eukaryotic offspring. Blombach F; Grohmann D Transcription; 2017 May; 8(3):162-168. PubMed ID: 28340330 [TBL] [Abstract][Full Text] [Related]
9. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Spitalny P; Thomm M Mol Microbiol; 2008 Mar; 67(5):958-70. PubMed ID: 18182021 [TBL] [Abstract][Full Text] [Related]
10. A Single-Molecule View of Archaeal Transcription. Kramm K; Endesfelder U; Grohmann D J Mol Biol; 2019 Sep; 431(20):4116-4131. PubMed ID: 31207238 [TBL] [Abstract][Full Text] [Related]
11. Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. Hirata A; Kanai T; Santangelo TJ; Tajiri M; Manabe K; Reeve JN; Imanaka T; Murakami KS Mol Microbiol; 2008 Nov; 70(3):623-33. PubMed ID: 18786148 [TBL] [Abstract][Full Text] [Related]
13. An Archaeal Fluoride-Responsive Riboswitch Provides an Inducible Expression System for Hyperthermophiles. Speed MC; Burkhart BW; Picking JW; Santangelo TJ Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29352088 [TBL] [Abstract][Full Text] [Related]
14. Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. Santangelo TJ; Reeve JN J Mol Biol; 2006 Jan; 355(2):196-210. PubMed ID: 16305799 [TBL] [Abstract][Full Text] [Related]
15. Archaeal DNA replication and repair. Kelman Z; White MF Curr Opin Microbiol; 2005 Dec; 8(6):669-76. PubMed ID: 16242991 [TBL] [Abstract][Full Text] [Related]
16. Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis. Nagata M; Ishino S; Yamagami T; Ishino Y Biosci Biotechnol Biochem; 2019 Apr; 83(4):695-704. PubMed ID: 30582424 [TBL] [Abstract][Full Text] [Related]
17. Cycling through transcription with the RNA polymerase F/E (RPB4/7) complex: structure, function and evolution of archaeal RNA polymerase. Grohmann D; Werner F Res Microbiol; 2011 Jan; 162(1):10-8. PubMed ID: 20863887 [TBL] [Abstract][Full Text] [Related]
18. Archaeal transcription and its regulators. Geiduschek EP; Ouhammouch M Mol Microbiol; 2005 Jun; 56(6):1397-407. PubMed ID: 15916593 [TBL] [Abstract][Full Text] [Related]
19. Key Concepts and Challenges in Archaeal Transcription. Blombach F; Matelska D; Fouqueau T; Cackett G; Werner F J Mol Biol; 2019 Sep; 431(20):4184-4201. PubMed ID: 31260691 [TBL] [Abstract][Full Text] [Related]
20. Prokaryotic sigma factors and their transcriptional counterparts in Archaea and Eukarya. Abril AG; Rama JLR; Sánchez-Pérez A; Villa TG Appl Microbiol Biotechnol; 2020 May; 104(10):4289-4302. PubMed ID: 32232532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]