BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28760974)

  • 1. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
    Lind GE; Mou TC; Tamborini L; Pomper MG; De Micheli C; Conti P; Pinto A; Hansen KB
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6942-E6951. PubMed ID: 28760974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077.
    Romero-Hernandez A; Furukawa H
    Mol Pharmacol; 2017 Jul; 92(1):22-29. PubMed ID: 28468946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.
    Kvist T; Greenwood JR; Hansen KB; Traynelis SF; Bräuner-Osborne H
    Neuropharmacology; 2013 Dec; 75():324-36. PubMed ID: 23973313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors.
    Hansen KB; Ogden KK; Yuan H; Traynelis SF
    Neuron; 2014 Mar; 81(5):1084-1096. PubMed ID: 24607230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site.
    Kvist T; Steffensen TB; Greenwood JR; Mehrzad Tabrizi F; Hansen KB; Gajhede M; Pickering DS; Traynelis SF; Kastrup JS; Bräuner-Osborne H
    J Biol Chem; 2013 Nov; 288(46):33124-35. PubMed ID: 24072709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist.
    McKay S; Griffiths NH; Butters PA; Thubron EB; Hardingham GE; Wyllie DJ
    Br J Pharmacol; 2012 Jun; 166(3):924-37. PubMed ID: 22022974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner.
    Edman S; McKay S; Macdonald LJ; Samadi M; Livesey MR; Hardingham GE; Wyllie DJ
    Neuropharmacology; 2012 Sep; 63(3):441-9. PubMed ID: 22579927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of Triheteromeric
    Yi F; Zachariassen LG; Dorsett KN; Hansen KB
    Mol Pharmacol; 2018 May; 93(5):453-467. PubMed ID: 29483146
    [No Abstract]   [Full Text] [Related]  

  • 9. Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits.
    Delaney AJ; Sedlak PL; Autuori E; Power JM; Sah P
    J Neurophysiol; 2013 Mar; 109(5):1391-402. PubMed ID: 23221411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors.
    Hansen KB; Tajima N; Risgaard R; Perszyk RE; Jørgensen L; Vance KM; Ogden KK; Clausen RP; Furukawa H; Traynelis SF
    Mol Pharmacol; 2013 Jul; 84(1):114-27. PubMed ID: 23625947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric Interactions between NMDA Receptor Subunits Shape the Developmental Shift in Channel Properties.
    Sun W; Hansen KB; Jahr CE
    Neuron; 2017 Apr; 94(1):58-64.e3. PubMed ID: 28384476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors.
    Riou M; Stroebel D; Edwardson JM; Paoletti P
    PLoS One; 2012; 7(4):e35134. PubMed ID: 22493736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors.
    Karakas E; Simorowski N; Furukawa H
    Nature; 2011 Jun; 475(7355):249-53. PubMed ID: 21677647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel family of negative and positive allosteric modulators of NMDA receptors.
    Costa BM; Irvine MW; Fang G; Eaves RJ; Mayo-Martin MB; Skifter DA; Jane DE; Monaghan DT
    J Pharmacol Exp Ther; 2010 Dec; 335(3):614-21. PubMed ID: 20858708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology.
    Ogden KK; Chen W; Swanger SA; McDaniel MJ; Fan LZ; Hu C; Tankovic A; Kusumoto H; Kosobucki GJ; Schulien AJ; Su Z; Pecha J; Bhattacharya S; Petrovski S; Cohen AE; Aizenman E; Traynelis SF; Yuan H
    PLoS Genet; 2017 Jan; 13(1):e1006536. PubMed ID: 28095420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative allosteric modulation of GluN1/GluN3 NMDA receptors.
    Zhu Z; Yi F; Epplin MP; Liu D; Summer SL; Mizu R; Shaulsky G; XiangWei W; Tang W; Burger PB; Menaldino DS; Myers SJ; Liotta DC; Hansen KB; Yuan H; Traynelis SF
    Neuropharmacology; 2020 Oct; 176():108117. PubMed ID: 32389749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrangement of subunits in functional NMDA receptors.
    Salussolia CL; Prodromou ML; Borker P; Wollmuth LP
    J Neurosci; 2011 Aug; 31(31):11295-304. PubMed ID: 21813689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into competitive antagonism in NMDA receptors.
    Jespersen A; Tajima N; Fernandez-Cuervo G; Garnier-Amblard EC; Furukawa H
    Neuron; 2014 Jan; 81(2):366-78. PubMed ID: 24462099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino terminal domains of the NMDA receptor are organized as local heterodimers.
    Lee CH; Gouaux E
    PLoS One; 2011 Apr; 6(4):e19180. PubMed ID: 21544205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local constraints in either the GluN1 or GluN2 subunit equally impair NMDA receptor pore opening.
    Talukder I; Wollmuth LP
    J Gen Physiol; 2011 Aug; 138(2):179-94. PubMed ID: 21746848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.