BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28760977)

  • 1. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.
    Hensel JK; Carpenter AP; Ciszewski RK; Schabes BK; Kittredge CT; Moore FG; Richmond GL
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13351-13356. PubMed ID: 28760977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Salt-Induced Charge Screening on AOT Adsorption to the Planar and Nanoemulsion Oil-Water Interfaces.
    Carpenter AP; Foster MJ; Jones KK; Richmond GL
    Langmuir; 2021 Jul; 37(29):8658-8666. PubMed ID: 34260854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and surface-stabilizing contributions to bare nanoemulsions created with negligible surface charge.
    Carpenter AP; Tran E; Altman RM; Richmond GL
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9214-9219. PubMed ID: 31019075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Duo: Vibrational Sum Frequency Scattering Investigation of pH-Switchable Carboxylic Acid/Carboxylate Surfactants on Nanodroplet Surfaces.
    Foster MJ; Carpenter AP; Richmond GL
    J Phys Chem B; 2021 Aug; 125(33):9629-9640. PubMed ID: 34402616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Transitions at the Water/Oil Interface by Ionic-Liquid-like Surfactant, 1-Butyl-3-methylimidazolium Dioctyl Sulfosuccinate: Measurements and Mechanism.
    Banerjee S; Bardhan S; Senapati S
    J Phys Chem B; 2022 Mar; 126(9):2014-2026. PubMed ID: 35213168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces.
    Carpenter AP; Altman RM; Tran E; Richmond GL
    J Phys Chem B; 2020 May; 124(20):4234-4245. PubMed ID: 32378899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peeling back the layers: Investigating the effects of polyelectrolyte layering on surface structure and stability of oil-in-water nanoemulsions.
    Tran E; Mapile AN; Richmond GL
    J Colloid Interface Sci; 2021 Oct; 599():706-716. PubMed ID: 33984763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What is so special about aerosol-OT? Part IV. Phenyl-tipped surfactants.
    Nave S; Paul A; Eastoe J; Pitt AR; Heenan RK
    Langmuir; 2005 Oct; 21(22):10021-7. PubMed ID: 16229522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme hyperactivity in AOT water-in-oil microemulsions is induced by 'lone' sodium counterions in the water-pool.
    Oldfield C; Freedman RB; Robinson BH
    Faraday Discuss; 2005; 129():247-63; discussion 275-89. PubMed ID: 15715311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the Formation of Nano-Sized Platinum Particles in Water-in-Oil Microemulsions.
    Ingelsten HH; Bagwe R; Palmqvist A; Skoglundh M; Svanberg C; Holmberg K; Shah DO
    J Colloid Interface Sci; 2001 Sep; 241(1):104-111. PubMed ID: 11502113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-mediated self-assembly of magnetite-gold nanoparticle superstructures at the water-oil interface of AOT reverse microemulsions.
    Fortes Martín R; Prietzel C; Koetz J
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):44-55. PubMed ID: 32771751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential adsorption of an irreversibly adsorbed nonionic surfactant and an anionic surfactant at an oil/aqueous interface.
    Kirby SM; Anna SL; Walker LM
    Langmuir; 2015 Apr; 31(14):4063-71. PubMed ID: 25798716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-AOT-alkylbenzene microemulsions: influence of alkyl chain length on structure and percolation behavior.
    Appel M; Spehr TL; Wipf R; Stühn B
    J Colloid Interface Sci; 2012 Jun; 376(1):140-5. PubMed ID: 22446149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the constrained environment on the interactions between the surfactant and different polar solvents encapsulated within AOT reverse micelles.
    Durantini AM; Falcone RD; Silber JJ; Correa NM
    Chemphyschem; 2009 Aug; 10(12):2034-40. PubMed ID: 19472265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the cationic surfactant moiety on the structure of water entrapped in two catanionic reverse micelles created from ionic liquid-like surfactants.
    Villa CC; Silber JJ; Correa NM; Falcone RD
    Chemphyschem; 2014 Oct; 15(14):3097-109. PubMed ID: 25044685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational energy transfer across a reverse micelle surfactant layer.
    Deàk JC; Pang Y; Sechler TD; Wang Z; Dlott DD
    Science; 2004 Oct; 306(5695):473-6. PubMed ID: 15388896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration or segregation: how do molecules behave at oil/water interfaces?
    Moore FG; Richmond GL
    Acc Chem Res; 2008 Jun; 41(6):739-48. PubMed ID: 18507401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the cation 1-butyl-3-methylimidazolium impacts the interaction between the entrapped water and the reverse micelle interface created with an ionic liquid-like surfactant.
    Lépori CM; Correa NM; Silber JJ; Falcone RD
    Soft Matter; 2016 Jan; 12(3):830-44. PubMed ID: 26542472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Nanoscale Thermal Transport in Surfactant Solutions.
    Cao F; Liu Y; Xu J; He Y; Hammouda B; Qiao R; Yang B
    Sci Rep; 2015 Nov; 5():16040. PubMed ID: 26534840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.