These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 28761974)

  • 1. Dicalcium Phosphate Anhydrous: An Appropriate Bioceramic in Regeneration of Critical-Sized Radial Bone Defects in Rats.
    Oryan A; Alidadi S; Bigham-Sadegh A
    Calcif Tissue Int; 2017 Nov; 101(5):530-544. PubMed ID: 28761974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A
    Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A
    J Mater Sci Mater Med; 2016 Oct; 27(10):155. PubMed ID: 27590825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Preparation and
    Lan Y; Zhang J; Ran Y; Li B; Cai X; Jiang T; Xue D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Jun; 38(6):755-762. PubMed ID: 38918199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.
    Hu MH; Lee PY; Chen WC; Hu JJ
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():82-8. PubMed ID: 25491804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A
    J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete subchondral bone defect regeneration with a tricalcium phosphate collagen implant and osteoinductive growth factors: a randomized controlled study in Göttingen minipigs.
    Gotterbarm T; Breusch SJ; Jung M; Streich N; Wiltfang J; Berardi Vilei S; Richter W; Nitsche T
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):933-42. PubMed ID: 24259283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of platelet gel embedded within gelatin scaffold on healing of experimentally induced critical-sized radial bone defects in rats.
    Alidadi S; Oryan A; Bigham-Sadegh A; Moshiri A
    Int Orthop; 2017 Apr; 41(4):805-812. PubMed ID: 28083671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demineralized bone matrix and hydroxyapatite/tri-calcium phosphate mixture for bone healing in rats.
    Oztürk A; Yetkin H; Memis L; Cila E; Bolukbasi S; Gemalmaz HC
    Int Orthop; 2006 Jun; 30(3):147-52. PubMed ID: 16565837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects.
    Wei L; Yu D; Wang M; Deng L; Wu G; Liu Y
    Tissue Eng Part A; 2020 Feb; 26(3-4):120-129. PubMed ID: 31436137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Evaluation of an Injectable Alginate / Dicalcium Phosphate Cement Composites for Bone Tissue Engineering.
    Alshemary AZ; Bilgin S; Işık G; Motameni A; Tezcaner A; Evis Z
    J Mech Behav Biomed Mater; 2021 Jun; 118():104439. PubMed ID: 33691231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats.
    Meimandi-Parizi A; Oryan A; Gholipour H
    Connect Tissue Res; 2018 Jul; 59(4):332-344. PubMed ID: 29035127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone regeneration in rabbit calvarial critical-sized defects filled with composite in situ formed xenogenic dentin and biphasic tricalcium phosphate/hyroxyapatite mixture.
    Kamal M; Andersson L; Al-Asfour A; Bartella AK; Gremse F; Rosenhain S; Gabato S; Hölzle F; Kessler P; Lethaus B
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):773-782. PubMed ID: 30253039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.