These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 28762063)
21. Pathogen biofilm formation on cantaloupe surface and its impact on the antibacterial effect of lauroyl arginate ethyl. Fu Y; Deering AJ; Bhunia AK; Yao Y Food Microbiol; 2017 Jun; 64():139-144. PubMed ID: 28213018 [TBL] [Abstract][Full Text] [Related]
22. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens. Remuzgo-Martínez S; Lázaro-Díez M; Mayer C; Aranzamendi-Zaldumbide M; Padilla D; Calvo J; Marco F; Martínez-Martínez L; Icardo JM; Otero A; Ramos-Vivas J Appl Environ Microbiol; 2015 May; 81(10):3306-15. PubMed ID: 25746999 [TBL] [Abstract][Full Text] [Related]
23. Biofilm formation and genomic features of Listeria monocytogenes strains isolated from meat and dairy industries located in Piedmont (Italy). Di Ciccio P; Rubiola S; Panebianco F; Lomonaco S; Allard M; Bianchi DM; Civera T; Chiesa F Int J Food Microbiol; 2022 Oct; 378():109784. PubMed ID: 35749910 [TBL] [Abstract][Full Text] [Related]
24. Evidence for the dynamics of Acyl homoserine lactone and AHL-producing bacteria during subtidal biofilm formation. Huang YL; Ki JS; Lee OO; Qian PY ISME J; 2009 Mar; 3(3):296-304. PubMed ID: 18987676 [TBL] [Abstract][Full Text] [Related]
25. Dual-species biofilm of Listeria monocytogenes and Escherichia coli on stainless steel surface. de Grandi AZ; Pinto UM; Destro MT World J Microbiol Biotechnol; 2018 Apr; 34(4):61. PubMed ID: 29651554 [TBL] [Abstract][Full Text] [Related]
26. Variation in biofilm formation among strains of Listeria monocytogenes. Borucki MK; Peppin JD; White D; Loge F; Call DR Appl Environ Microbiol; 2003 Dec; 69(12):7336-42. PubMed ID: 14660383 [TBL] [Abstract][Full Text] [Related]
27. Inhibitory Effect of Thymoquinone on Miao X; Liu H; Zheng Y; Guo D; Shi C; Xu Y; Xia X Front Cell Infect Microbiol; 2019; 9():304. PubMed ID: 31508379 [TBL] [Abstract][Full Text] [Related]
28. Characteristics of N-Acylhomoserine Lactones Produced by Hafnia alvei H4 Isolated from Spoiled Instant Sea Cucumber. Hou HM; Zhu YL; Wang JY; Jiang F; Qu WY; Zhang GL; Hao HS Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28379194 [TBL] [Abstract][Full Text] [Related]
29. Correlation Between Quorum Sensing Signal Molecules and Pseudomonas aeruginosa's Biofilm Development and Virulency. Alayande AB; Aung MM; Kim IS Curr Microbiol; 2018 Jul; 75(7):787-793. PubMed ID: 29427006 [TBL] [Abstract][Full Text] [Related]
30. The effect of tobramycin incorporated with bismuth-ethanedithiol loaded on niosomes on the quorum sensing and biofilm formation of Pseudomonas aeruginosa. Mahdiun F; Mansouri S; Khazaeli P; Mirzaei R Microb Pathog; 2017 Jun; 107():129-135. PubMed ID: 28323149 [TBL] [Abstract][Full Text] [Related]
31. Profiling of acylated homoserine lactones of Vibrio anguillarum in vitro and in vivo: Influence of growth conditions and serotype. Buchholtz C; Nielsen KF; Milton DL; Larsen JL; Gram L Syst Appl Microbiol; 2006 Sep; 29(6):433-45. PubMed ID: 16413159 [TBL] [Abstract][Full Text] [Related]
32. Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Gotschlich A; Huber B; Geisenberger O; Tögl A; Steidle A; Riedel K; Hill P; Tümmler B; Vandamme P; Middleton B; Camara M; Williams P; Hardman A; Eberl L Syst Appl Microbiol; 2001 Apr; 24(1):1-14. PubMed ID: 11403388 [TBL] [Abstract][Full Text] [Related]
33. Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Pumbwe L; Skilbeck CA; Wexler HM Microb Ecol; 2008 Oct; 56(3):412-9. PubMed ID: 18188535 [TBL] [Abstract][Full Text] [Related]
34. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems. Okutsu N; Morohoshi T; Xie X; Kato N; Ikeda T Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729121 [TBL] [Abstract][Full Text] [Related]
35. Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin. Kadam SR; den Besten HM; van der Veen S; Zwietering MH; Moezelaar R; Abee T Int J Food Microbiol; 2013 Aug; 165(3):259-64. PubMed ID: 23800738 [TBL] [Abstract][Full Text] [Related]
37. Isolation and characterization of acyl homoserine lactone-producing bacteria during an urban river biofilm formation. Huang Y; Zhang J; Yu Z; Zeng Y; Chen Y Arch Microbiol; 2012 Dec; 194(12):1043-8. PubMed ID: 23090571 [TBL] [Abstract][Full Text] [Related]
38. The effect of oleanolic and ursolic acids on the hemolytic properties and biofilm formation of Listeria monocytogenes. Kurek A; Markowska K; Grudniak AM; Janiszowska W; Wolska KI Pol J Microbiol; 2014; 63(1):21-5. PubMed ID: 25033658 [TBL] [Abstract][Full Text] [Related]
39. Reactive oxygen species inhibit biofilm formation of Listeria monocytogenes. Guo L; Zhang C; Chen G; Wu M; Liu W; Ding C; Dong Q; Fan E; Liu Q Microb Pathog; 2019 Feb; 127():183-189. PubMed ID: 30458253 [TBL] [Abstract][Full Text] [Related]
40. Lactocin AL705 as quorum sensing inhibitor to control Listeria monocytogenes biofilm formation. Melian C; Segli F; Gonzalez R; Vignolo G; Castellano P J Appl Microbiol; 2019 Sep; 127(3):911-920. PubMed ID: 31206966 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]