BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1004 related articles for article (PubMed ID: 28762196)

  • 21. Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning.
    Yu X; Wang H; Ma L
    Curr Med Imaging Rev; 2020; 16(2):174-180. PubMed ID: 32003318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
    Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J
    Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Super-resolution Guided Network for Improving Automated Thyroid Nodule Segmentation.
    Lin X; Zhou X; Tong T; Nie X; Wang L; Zheng H; Li J; Xue E; Chen S; Zheng M; Chen C; Jiang H; Du M; Gao Q
    Comput Methods Programs Biomed; 2022 Dec; 227():107186. PubMed ID: 36334526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrating User-Input into Deep Convolutional Neural Networks for Thyroid Nodule Segmentation.
    Daulatabad R; Vega R; Jaremko JL; Kapur J; Hareendranathan AR; Punithakumar K
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2637-2640. PubMed ID: 34891794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A two-stage network with prior knowledge guidance for medullary thyroid carcinoma recognition in ultrasound images.
    Pan L; Cai Y; Lin N; Yang L; Zheng S; Huang L
    Med Phys; 2022 Apr; 49(4):2413-2426. PubMed ID: 35103313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliable Thyroid Carcinoma Detection with Real-Time Intelligent Analysis of Ultrasound Images.
    Fang H; Gong L; Xu Y; Zhuo Y; Kong W; Peng C; Yuan J
    Ultrasound Med Biol; 2021 Mar; 47(3):590-602. PubMed ID: 33328131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Objective assessment of segmentation models for thyroid ultrasound images.
    Yadav N; Dass R; Virmani J
    J Ultrasound; 2023 Sep; 26(3):673-685. PubMed ID: 36195781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local and Context-Attention Adaptive LCA-Net for Thyroid Nodule Segmentation in Ultrasound Images.
    Tao Z; Dang H; Shi Y; Wang W; Wang X; Ren S
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Agile convolutional neural network for pulmonary nodule classification using CT images.
    Zhao X; Liu L; Qi S; Teng Y; Li J; Qian W
    Int J Comput Assist Radiol Surg; 2018 Apr; 13(4):585-595. PubMed ID: 29473129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions.
    van den Noort F; van der Vaart CH; Grob ATM; van de Waarsenburg MK; Slump CH; van Stralen M
    Ultrasound Obstet Gynecol; 2019 Aug; 54(2):270-275. PubMed ID: 30461079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network.
    Chi J; Walia E; Babyn P; Wang J; Groot G; Eramian M
    J Digit Imaging; 2017 Aug; 30(4):477-486. PubMed ID: 28695342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks.
    Wang L; Zhang L; Zhu M; Qi X; Yi Z
    Med Image Anal; 2020 Apr; 61():101665. PubMed ID: 32062156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast and robust segmentation of the striatum using deep convolutional neural networks.
    Choi H; Jin KH
    J Neurosci Methods; 2016 Dec; 274():146-153. PubMed ID: 27777000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thyroid nodule segmentation and classification in ultrasound images through intra- and inter-task consistent learning.
    Kang Q; Lao Q; Li Y; Jiang Z; Qiu Y; Zhang S; Li K
    Med Image Anal; 2022 Jul; 79():102443. PubMed ID: 35537340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation.
    Dong X; Xu S; Liu Y; Wang A; Saripan MI; Li L; Zhang X; Lu L
    Cancer Imaging; 2020 Aug; 20(1):53. PubMed ID: 32738913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks.
    Liu T; Guo Q; Lian C; Ren X; Liang S; Yu J; Niu L; Sun W; Shen D
    Med Image Anal; 2019 Dec; 58():101555. PubMed ID: 31520984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.