These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28762197)
1. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases. McGillewie L; Ramesh M; Soliman ME Protein J; 2017 Oct; 36(5):385-396. PubMed ID: 28762197 [TBL] [Abstract][Full Text] [Related]
2. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses. McGillewie L; Soliman ME Proteins; 2015 Sep; 83(9):1693-705. PubMed ID: 26146842 [TBL] [Abstract][Full Text] [Related]
3. Molecular Dynamics Simulations of Ligand-Induced Flap Conformational Changes in Cathepsin-D-A Comparative Study. Arodola OA; Soliman ME J Cell Biochem; 2016 Nov; 117(11):2643-57. PubMed ID: 27038253 [TBL] [Abstract][Full Text] [Related]
4. Flap Dynamics in Aspartic Proteases: A Computational Perspective. Mahanti M; Bhakat S; Nilsson UJ; Söderhjelm P Chem Biol Drug Des; 2016 Aug; 88(2):159-77. PubMed ID: 26872937 [TBL] [Abstract][Full Text] [Related]
5. Aspartic proteases in drug discovery. Eder J; Hommel U; Cumin F; Martoglio B; Gerhartz B Curr Pharm Des; 2007; 13(3):271-85. PubMed ID: 17313361 [TBL] [Abstract][Full Text] [Related]
6. The binding landscape of plasmepsin V and the implications for flap dynamics. L M; Soliman ME Mol Biosyst; 2016 Apr; 12(5):1457-67. PubMed ID: 26965894 [TBL] [Abstract][Full Text] [Related]
7. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility. Kumalo HM; Soliman ME J Recept Signal Transduct Res; 2016 Oct; 36(5):505-14. PubMed ID: 26804314 [TBL] [Abstract][Full Text] [Related]
8. Insight into the structural similarity between HIV protease and secreted aspartic protease-2 and binding mode analysis of HIV-Candida albicans inhibitors. Calugi C; Guarna A; Trabocchi A J Enzyme Inhib Med Chem; 2013 Oct; 28(5):936-43. PubMed ID: 22803674 [TBL] [Abstract][Full Text] [Related]
9. Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. Hartman AM; Mondal M; Radeva N; Klebe G; Hirsch AK Int J Mol Sci; 2015 Aug; 16(8):19184-94. PubMed ID: 26287174 [TBL] [Abstract][Full Text] [Related]
10. Inhibitors of aspartic proteases in human diseases: molecular modeling comes of age. Hoegl L; Korting HC; Klebe G Pharmazie; 1999 May; 54(5):319-29. PubMed ID: 10368824 [TBL] [Abstract][Full Text] [Related]
11. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance. Naicker P; Achilonu I; Fanucchi S; Fernandes M; Ibrahim MA; Dirr HW; Soliman ME; Sayed Y J Biomol Struct Dyn; 2013 Dec; 31(12):1370-80. PubMed ID: 23140382 [TBL] [Abstract][Full Text] [Related]
12. Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations. Hernández-Rodríguez M; Correa-Basurto J; Gutiérrez A; Vitorica J; Rosales-Hernández MC Eur J Med Chem; 2016 Nov; 124():1142-1154. PubMed ID: 27639619 [TBL] [Abstract][Full Text] [Related]
13. Flap dynamics of plasmepsin proteases: insight into proposed parameters and molecular dynamics. Karubiu W; Bhakat S; McGillewie L; Soliman ME Mol Biosyst; 2015 Apr; 11(4):1061-6. PubMed ID: 25630418 [TBL] [Abstract][Full Text] [Related]
14. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations. Rose RB; Craik CS; Stroud RM Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411 [TBL] [Abstract][Full Text] [Related]
15. Comparison of inhibitor binding in HIV-1 protease and in non-viral aspartic proteases: the role of the flap. Gustchina A; Weber IT FEBS Lett; 1990 Aug; 269(1):269-72. PubMed ID: 2201571 [TBL] [Abstract][Full Text] [Related]
17. Aspartic peptidase inhibitors: implications in drug development. Dash C; Kulkarni A; Dunn B; Rao M Crit Rev Biochem Mol Biol; 2003; 38(2):89-119. PubMed ID: 12749695 [TBL] [Abstract][Full Text] [Related]
18. Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors. Savarino A; Cauda R; Cassone A J Infect Dis; 2005 Apr; 191(8):1381-2; author reply 1382-3. PubMed ID: 15776390 [No Abstract] [Full Text] [Related]
19. Achiral oligoamines as versatile tool for the development of aspartic protease inhibitors. Blum A; Böttcher J; Sammet B; Luksch T; Heine A; Klebe G; Diederich WE Bioorg Med Chem; 2008 Sep; 16(18):8574-86. PubMed ID: 18760609 [TBL] [Abstract][Full Text] [Related]
20. Flap position of free memapsin 2 (beta-secretase), a model for flap opening in aspartic protease catalysis. Hong L; Tang J Biochemistry; 2004 Apr; 43(16):4689-95. PubMed ID: 15096037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]