BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28762234)

  • 1. The link between exercise and titin passive stiffness.
    Lalande S; Mueller PJ; Chung CS
    Exp Physiol; 2017 Sep; 102(9):1055-1066. PubMed ID: 28762234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimentally Increasing the Compliance of Titin Through RNA Binding Motif-20 (RBM20) Inhibition Improves Diastolic Function In a Mouse Model of Heart Failure With Preserved Ejection Fraction.
    Methawasin M; Strom JG; Slater RE; Fernandez V; Saripalli C; Granzier H
    Circulation; 2016 Oct; 134(15):1085-1099. PubMed ID: 27630136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete's Heart.
    Kellermayer D; Kiss B; Tordai H; Oláh A; Granzier HL; Merkely B; Kellermayer M; Radovits T
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy.
    Nagueh SF; Shah G; Wu Y; Torre-Amione G; King NM; Lahmers S; Witt CC; Becker K; Labeit S; Granzier HL
    Circulation; 2004 Jul; 110(2):155-62. PubMed ID: 15238456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of exercise training on post-translational and post-transcriptional regulation of titin stiffness in striated muscle of wild type and IG KO mice.
    Hidalgo C; Saripalli C; Granzier HL
    Arch Biochem Biophys; 2014 Jun; 552-553():100-7. PubMed ID: 24603287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased myocardial stiffness due to cardiac titin isoform switching in a mouse model of volume overload limits eccentric remodeling.
    Hutchinson KR; Saripalli C; Chung CS; Granzier H
    J Mol Cell Cardiol; 2015 Feb; 79():104-14. PubMed ID: 25450617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of exercise on passive myocardial stiffness in mice with diastolic dysfunction.
    Slater RE; Strom JG; Granzier H
    J Mol Cell Cardiol; 2017 Jul; 108():24-33. PubMed ID: 28476659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations.
    Anderson BR; Granzier HL
    Prog Biophys Mol Biol; 2012; 110(2-3):204-17. PubMed ID: 22910434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle.
    Wu Y; Cazorla O; Labeit D; Labeit S; Granzier H
    J Mol Cell Cardiol; 2000 Dec; 32(12):2151-62. PubMed ID: 11112991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative Splicing of Titin Restores Diastolic Function in an HFpEF-Like Genetic Murine Model (TtnΔIAjxn).
    Bull M; Methawasin M; Strom J; Nair P; Hutchinson K; Granzier H
    Circ Res; 2016 Sep; 119(6):764-72. PubMed ID: 27470639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts.
    Kötter S; Gout L; Von Frieling-Salewsky M; Müller AE; Helling S; Marcus K; Dos Remedios C; Linke WA; Krüger M
    Cardiovasc Res; 2013 Sep; 99(4):648-56. PubMed ID: 23764881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension.
    Krüger M; Linke WA
    J Muscle Res Cell Motil; 2006; 27(5-7):435-44. PubMed ID: 16897574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1.
    Hopf AE; Andresen C; Kötter S; Isić M; Ulrich K; Sahin S; Bongardt S; Röll W; Drove F; Scheerer N; Vandekerckhove L; De Keulenaer GW; Hamdani N; Linke WA; Krüger M
    Circ Res; 2018 Jul; 123(3):342-355. PubMed ID: 29760016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the molecular giant titin through phosphorylation: role in health and disease.
    Hidalgo C; Granzier H
    Trends Cardiovasc Med; 2013 Jul; 23(5):165-71. PubMed ID: 23295080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperphosphorylation of mouse cardiac titin contributes to transverse aortic constriction-induced diastolic dysfunction.
    Hudson B; Hidalgo C; Saripalli C; Granzier H
    Circ Res; 2011 Sep; 109(8):858-66. PubMed ID: 21835910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs.
    Krüger M; Kötter S; Grützner A; Lang P; Andresen C; Redfield MM; Butt E; dos Remedios CG; Linke WA
    Circ Res; 2009 Jan; 104(1):87-94. PubMed ID: 19023132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.
    Wu Y; Peng J; Campbell KB; Labeit S; Granzier H
    J Mol Cell Cardiol; 2007 Jan; 42(1):186-95. PubMed ID: 17069849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner.
    Fukuda N; Wu Y; Nair P; Granzier HL
    J Gen Physiol; 2005 Mar; 125(3):257-71. PubMed ID: 15738048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the giant elastic protein titin in the Frank-Starling mechanism of the heart.
    Fukuda N; Granzier H
    Curr Vasc Pharmacol; 2004 Apr; 2(2):135-9. PubMed ID: 15320514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.