These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28762245)

  • 1. Electrostatics Explains the Position-Dependent Effect of G⋅U Wobble Base Pairs on the Affinity of RNA Kissing Complexes.
    Abi-Ghanem J; Rabin C; Porrini M; Dausse E; Toulmé JJ; Gabelica V
    Chemphyschem; 2017 Oct; 18(19):2782-2790. PubMed ID: 28762245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear Magnetic Resonance Reveals That GU Base Pairs Flanking Internal Loops Can Adopt Diverse Structures.
    Berger KD; Kennedy SD; Turner DH
    Biochemistry; 2019 Feb; 58(8):1094-1108. PubMed ID: 30702283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electrostatic characteristics of G.U wobble base pairs.
    Xu D; Landon T; Greenbaum NL; Fenley MO
    Nucleic Acids Res; 2007; 35(11):3836-47. PubMed ID: 17526525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems.
    Varani G; McClain WH
    EMBO Rep; 2000 Jul; 1(1):18-23. PubMed ID: 11256617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the structural basis for thermodynamic stabilities of tandem GU wobble pairs: NMR structures of (rGGAGUUCC)2 and (rGGAUGUCC)2.
    McDowell JA; He L; Chen X; Turner DH
    Biochemistry; 1997 Jul; 36(26):8030-8. PubMed ID: 9201950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CA(+) pair adjacent to a sheared GA or AA pair stabilizes size-symmetric RNA internal loops.
    Chen G; Kennedy SD; Turner DH
    Biochemistry; 2009 Jun; 48(24):5738-52. PubMed ID: 19485416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling and dynamics studies of HIV-1 kissing loop structures.
    Pattabiraman N; Martinez HM; Shapiro BA
    J Biomol Struct Dyn; 2002 Dec; 20(3):397-412. PubMed ID: 12437378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of RNA hairpins closed by wobble base pairs.
    Giese MR; Betschart K; Dale T; Riley CK; Rowan C; Sprouse KJ; Serra MJ
    Biochemistry; 1998 Jan; 37(4):1094-100. PubMed ID: 9454601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Janus compounds for the recognition of G-U mismatched nucleobase pairs.
    Artigas G; Marchán V
    J Org Chem; 2013 Nov; 78(21):10666-77. PubMed ID: 24087986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stacking effects on local structure in RNA: changes in the structure of tandem GA pairs when flanking GC pairs are replaced by isoG-isoC pairs.
    Chen G; Kierzek R; Yildirim I; Krugh TR; Turner DH; Kennedy SD
    J Phys Chem B; 2007 Jun; 111(24):6718-27. PubMed ID: 17411085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of a DNA double helix incorporating four consecutive non-Watson-Crick base-pairs.
    Chou SH; Chin KH
    J Mol Biol; 2001 Sep; 312(4):769-81. PubMed ID: 11575931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the conformational stability of the smallest RNA kissing complexes maintained through two G·C base pairs.
    Chu W; Weerasekera A; Kim CH
    Biochem Biophys Res Commun; 2017 Jan; 483(1):39-44. PubMed ID: 28063925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wobble base-pairing in codon-anticodon interactions: a theoretical modelling study.
    Mangang SU; Lyngdoh RH
    Indian J Biochem Biophys; 2001; 38(1-2):115-9. PubMed ID: 11563322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Hydrogen Bonds and Base Stacking of Single, Tandem and Terminal GU Mismatches in RNA with a Mesoscopic Model.
    Amarante TD; Weber G
    J Chem Inf Model; 2016 Jan; 56(1):101-9. PubMed ID: 26624232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency and effect of the binding of Mg2+, Mn2+, and Co2+ ions on the guanine base in Watson-Crick and reverse Watson-Crick base pairs.
    Oliva R; Cavallo L
    J Phys Chem B; 2009 Nov; 113(47):15670-8. PubMed ID: 19921955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of thermodynamic parameters for HIV DIS type loop-loop kissing complexes.
    Weixlbaumer A; Werner A; Flamm C; Westhof E; Schroeder R
    Nucleic Acids Res; 2004; 32(17):5126-33. PubMed ID: 15459283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures and Energetics of Four Adjacent G·U Pairs That Stabilize an RNA Helix.
    Gu X; Mooers BH; Thomas LM; Malone J; Harris S; Schroeder SJ
    J Phys Chem B; 2015 Oct; 119(42):13252-61. PubMed ID: 26425937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.
    Bhattacharyya D; Halder S; Basu S; Mukherjee D; Kumar P; Bansal M
    J Comput Aided Mol Des; 2017 Feb; 31(2):219-235. PubMed ID: 28102461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.