These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28762419)

  • 1. Efficient
    Qu Y; Li F; Zhao M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21522-21526. PubMed ID: 28762419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphenylene and inorganic graphenylene nanopores for gas-phase
    Motallebipour MS; Karimi-Sabet J
    Phys Chem Chem Phys; 2021 Jul; 23(27):14706-14715. PubMed ID: 34190225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.
    Qu Y; Li F; Zhou H; Zhao M
    Sci Rep; 2016 Jan; 6():19952. PubMed ID: 26813491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency helium separation through an inorganic graphenylene membrane: a theoretical study.
    Wang L; Li F; Wang J; Li Y; Li W; Yang Y; Zhao M; Qu Y
    Phys Chem Chem Phys; 2020 May; 22(17):9789-9795. PubMed ID: 32337529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient separation of He/CH
    Pakdel S; Erfan-Niya H; Azamat J
    J Mol Graph Model; 2022 Sep; 115():108211. PubMed ID: 35568005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient hydrogen isotopologues separation through a tunable potential barrier: The case of a C
    Qu Y; Li F; Zhao M
    Sci Rep; 2017 May; 7(1):1483. PubMed ID: 28469149
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Motallebiour MS; Karimi-Sabet J; Maghari A
    Phys Chem Chem Phys; 2019 Jun; 21(23):12414-12422. PubMed ID: 31140999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.
    Hernández MI; Bartolomei M; Campos-Martínez J
    J Phys Chem A; 2015 Oct; 119(43):10743-9. PubMed ID: 26447561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Polybenzimidazole Membranes for Helium Extraction from Natural Gas.
    Wang X; Shan M; Liu X; Wang M; Doherty CM; Osadchii D; Kapteijn F
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20098-20103. PubMed ID: 31094508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal-Organic Frameworks, and Covalent Organic Frameworks.
    Kim JY; Oh H; Moon HR
    Adv Mater; 2019 May; 31(20):e1805293. PubMed ID: 30589123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Effects on H
    Gao LG; Zhang RM; Xu X; Truhlar DG
    J Am Chem Soc; 2019 Aug; 141(34):13635-13642. PubMed ID: 31362505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Helium Separation with Two-Dimensional Metal-Organic Framework Fe/Ni-PTC: A Theoretical Study.
    Wang J; Li Y; Yang Y; Li Y; Zhao M; Li W; Guan J; Qu Y
    Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective germanene as a high-efficiency helium separation membrane: a first-principles study.
    Zhu L; Chang X; He D; Xue Q; Li X; Jin Y; Zheng H; Ling C
    Nanotechnology; 2017 Mar; 28(13):135703. PubMed ID: 28248644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Coated Halloysite Nanoclay Membrane for the Enhanced Separation of Hydrogen from a Hydrogen-Helium Mixture.
    Dutta S; Das N
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32444-32456. PubMed ID: 35793082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotopic separation of helium through graphyne membranes: a ring polymer molecular dynamics study.
    Bhowmick S; Hernández MI; Campos-Martínez J; Suleimanov YV
    Phys Chem Chem Phys; 2021 Sep; 23(34):18547-18557. PubMed ID: 34612392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Transmission of He Isotopes through Crown Ether-Embedded Graphene Nanomeshes: An Eckart Potential Approach.
    Dhali R; John C; Swathi RS
    J Phys Chem A; 2019 Aug; 123(34):7499-7506. PubMed ID: 31385701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropic selectivity in air separation via a bilayer nanoporous graphene membrane.
    Wang S; Dai S; Jiang DE
    Phys Chem Chem Phys; 2019 Jul; 21(29):16310-16315. PubMed ID: 31305855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helium isotope enrichment by resonant tunneling through nanoporous graphene bilayers.
    Mandrà S; Schrier J; Ceotto M
    J Phys Chem A; 2014 Aug; 118(33):6457-65. PubMed ID: 24854987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient helium purification through a dual-membrane system: insights from molecular dynamics simulations.
    Pakdel S; Erfan-Niya H; Azamat J; Hasanzadeh A
    Phys Chem Chem Phys; 2023 Nov; 25(44):30572-30582. PubMed ID: 37929921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes.
    Mazzuca JW; Haut NK
    J Chem Phys; 2018 Jun; 148(22):224301. PubMed ID: 29907032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.