BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 28762469)

  • 1. Impairment of GABAergic system contributes to epileptogenesis in glutaric acidemia type I.
    Vendramin Pasquetti M; Meier L; Loureiro S; Ganzella M; Junges B; Barbieri Caus L; Umpierrez Amaral A; Koeller DM; Goodman S; Woontner M; Gomes de Souza DO; Wajner M; Calcagnotto ME
    Epilepsia; 2017 Oct; 58(10):1771-1781. PubMed ID: 28762469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I.
    Olivera-Bravo S; Ribeiro CA; Isasi E; Trías E; Leipnitz G; Díaz-Amarilla P; Woontner M; Beck C; Goodman SI; Souza D; Wajner M; Barbeito L
    Hum Mol Genet; 2015 Aug; 24(16):4504-15. PubMed ID: 25968119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I.
    Barbieri Caus L; Pasquetti MV; Seminotti B; Woontner M; Wajner M; Calcagnotto ME
    J Neurosci Res; 2022 Apr; 100(4):992-1007. PubMed ID: 34713466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I.
    Busanello EN; Fernandes CG; Martell RV; Lobato VG; Goodman S; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2014 Nov; 346(1-2):260-7. PubMed ID: 25241940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism.
    Biagosch C; Ediga RD; Hensler SV; Faerberboeck M; Kuehn R; Wurst W; Meitinger T; Kölker S; Sauer S; Prokisch H
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2220-2228. PubMed ID: 28545977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I.
    Sauer SW; Opp S; Komatsuzaki S; Blank AE; Mittelbronn M; Burgard P; Koeller DM; Okun JG; Kölker S
    Biochim Biophys Acta; 2015 May; 1852(5):768-77. PubMed ID: 25558815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.
    Amaral AU; Cecatto C; Seminotti B; Zanatta Â; Fernandes CG; Busanello EN; Braga LM; Ribeiro CA; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M
    Mol Genet Metab; 2012 Sep; 107(1-2):81-6. PubMed ID: 22578804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Amaral AU; Cecatto C; Seminotti B; Ribeiro CA; Lagranha VL; Pereira CC; de Oliveira FH; de Souza DG; Goodman S; Woontner M; Wajner M
    Brain Res; 2015 Sep; 1620():116-29. PubMed ID: 25998543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery.
    Gonzalez Melo M; Remacle N; Cudré-Cung HP; Roux C; Poms M; Cudalbu C; Barroso M; Gersting SW; Feichtinger RG; Mayr JA; Costanzo M; Caterino M; Ruoppolo M; Rüfenacht V; Häberle J; Braissant O; Ballhausen D
    Mol Genet Metab; 2021 Jun; 133(2):157-181. PubMed ID: 33965309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Guerreiro G; Amaral AU; Ribeiro RT; Faverzani J; Groehs AC; Sitta A; Deon M; Wajner M; Vargas CR
    Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2420-2427. PubMed ID: 31181292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I.
    Seminotti B; Amaral AU; Ribeiro RT; Rodrigues MDN; Colín-González AL; Leipnitz G; Santamaría A; Wajner M
    Mol Neurobiol; 2016 Nov; 53(9):6459-6475. PubMed ID: 26607633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice.
    Amaral AU; Seminotti B; da Silva JC; de Oliveira FH; Ribeiro RT; Vargas CR; Leipnitz G; Santamaría A; Souza DO; Wajner M
    Neurotox Res; 2018 Apr; 33(3):593-606. PubMed ID: 29235064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I.
    Amaral AU; Seminotti B; Cecatto C; Fernandes CG; Busanello EN; Zanatta Â; Kist LW; Bogo MR; de Souza DO; Woontner M; Goodman S; Koeller DM; Wajner M
    Mol Genet Metab; 2012 Nov; 107(3):375-82. PubMed ID: 22999741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonium accumulation and chemokine decrease in culture media of Gcdh
    Cudré-Cung HP; Remacle N; do Vale-Pereira S; Gonzalez M; Henry H; Ivanisevic J; Schmiesing J; Mühlhausen C; Braissant O; Ballhausen D
    Mol Genet Metab; 2019 Apr; 126(4):416-428. PubMed ID: 30686684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute lysine overload provokes protein oxidative damage and reduction of antioxidant defenses in the brain of infant glutaryl-CoA dehydrogenase deficient mice: a role for oxidative stress in GA I neuropathology.
    Seminotti B; Ribeiro RT; Amaral AU; da Rosa MS; Pereira CC; Leipnitz G; Koeller DM; Goodman S; Woontner M; Wajner M
    J Neurol Sci; 2014 Sep; 344(1-2):105-13. PubMed ID: 24996493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model.
    Wajner M; Amaral AU; Leipnitz G; Seminotti B
    Int J Dev Neurosci; 2019 Nov; 78():215-221. PubMed ID: 31125684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology.
    Rodrigues MD; Seminotti B; Amaral AU; Leipnitz G; Goodman SI; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2015 Dec; 359(1-2):133-40. PubMed ID: 26671102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical and molecular investigation in Chinese patients with glutaric aciduria type I.
    Zhang Y; Li H; Ma R; Mei L; Wei X; Liang D; Wu L
    Clin Chim Acta; 2016 Jan; 453():75-9. PubMed ID: 26656312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.
    Seminotti B; Amaral AU; da Rosa MS; Fernandes CG; Leipnitz G; Olivera-Bravo S; Barbeito L; Ribeiro CA; de Souza DO; Woontner M; Goodman SI; Koeller DM; Wajner M
    Mol Genet Metab; 2013 Jan; 108(1):30-9. PubMed ID: 23218171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical, biochemical, neuroradiological and molecular characterization of Egyptian patients with glutaric acidemia type 1.
    Zayed H; El Khayat H; Tomoum H; Khalifa O; Siddiq E; Mohammad SA; Gamal R; Shi Z; Mosailhy A; Zaki OK
    Metab Brain Dis; 2019 Aug; 34(4):1231-1241. PubMed ID: 31062211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.