These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 28762552)
1. Application of Computer-Aided Diagnosis on Breast Ultrasonography: Evaluation of Diagnostic Performances and Agreement of Radiologists According to Different Levels of Experience. Cho E; Kim EK; Song MK; Yoon JH J Ultrasound Med; 2018 Jan; 37(1):209-216. PubMed ID: 28762552 [TBL] [Abstract][Full Text] [Related]
2. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: Added value for the inexperienced breast radiologist. Park HJ; Kim SM; La Yun B; Jang M; Kim B; Jang JY; Lee JY; Lee SH Medicine (Baltimore); 2019 Jan; 98(3):e14146. PubMed ID: 30653149 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the effect of computer aided diagnosis system on breast ultrasound for inexperienced radiologists in describing and determining breast lesions. Lee J; Kim S; Kang BJ; Kim SH; Park GE Med Ultrason; 2019 Aug; 21(3):239-245. PubMed ID: 31476202 [TBL] [Abstract][Full Text] [Related]
4. Computer aided classification system for breast ultrasound based on Breast Imaging Reporting and Data System (BI-RADS). Shen WC; Chang RF; Moon WK Ultrasound Med Biol; 2007 Nov; 33(11):1688-98. PubMed ID: 17681678 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist's experience. Chabi ML; Borget I; Ardiles R; Aboud G; Boussouar S; Vilar V; Dromain C; Balleyguier C Acad Radiol; 2012 Mar; 19(3):311-9. PubMed ID: 22310523 [TBL] [Abstract][Full Text] [Related]
6. 1000-Case Reader Study of Radiologists' Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System. Xu X; Bao L; Tan Y; Zhu L; Kong F; Wang W Ultrasound Med Biol; 2018 Aug; 44(8):1694-1702. PubMed ID: 29853222 [TBL] [Abstract][Full Text] [Related]
7. Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography. Choi JS; Han BK; Ko ES; Bae JM; Ko EY; Song SH; Kwon MR; Shin JH; Hahn SY Korean J Radiol; 2019 May; 20(5):749-758. PubMed ID: 30993926 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of computer-aided diagnosis in breast ultrasonography: Improvement in diagnostic performance of inexperienced radiologists. Nicosia L; Addante F; Bozzini AC; Latronico A; Montesano M; Meneghetti L; Tettamanzi F; Frassoni S; Bagnardi V; De Santis R; Pesapane F; Fodor CI; Mastropasqua MG; Cassano E Clin Imaging; 2022 Feb; 82():150-155. PubMed ID: 34826773 [TBL] [Abstract][Full Text] [Related]
9. Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist. Kim K; Song MK; Kim EK; Yoon JH Ultrasonography; 2017 Jan; 36(1):3-9. PubMed ID: 27184656 [TBL] [Abstract][Full Text] [Related]
10. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Sahiner B; Chan HP; Roubidoux MA; Hadjiiski LM; Helvie MA; Paramagul C; Bailey J; Nees AV; Blane C Radiology; 2007 Mar; 242(3):716-24. PubMed ID: 17244717 [TBL] [Abstract][Full Text] [Related]
11. Computer-Aided Diagnosis of Solid Breast Lesions With Ultrasound: Factors Associated With False-negative and False-positive Results. Wu JY; Zhao ZZ; Zhang WY; Liang M; Ou B; Yang HY; Luo BM J Ultrasound Med; 2019 Dec; 38(12):3193-3202. PubMed ID: 31077414 [TBL] [Abstract][Full Text] [Related]
12. Added value of deep learning-based computer-aided diagnosis and shear wave elastography to b-mode ultrasound for evaluation of breast masses detected by screening ultrasound. Kim MY; Kim SY; Kim YS; Kim ES; Chang JM Medicine (Baltimore); 2021 Aug; 100(31):e26823. PubMed ID: 34397844 [TBL] [Abstract][Full Text] [Related]
13. CAD algorithms for solid breast masses discrimination: evaluation of the accuracy and interobserver variability. Wang Y; Jiang S; Wang H; Guo YH; Liu B; Hou Y; Cheng H; Tian J Ultrasound Med Biol; 2010 Aug; 36(8):1273-81. PubMed ID: 20691917 [TBL] [Abstract][Full Text] [Related]
14. The diagnostic performance of ultrasound computer-aided diagnosis system for distinguishing breast masses: a prospective multicenter study. Wei Q; Yan YJ; Wu GG; Ye XR; Jiang F; Liu J; Wang G; Wang Y; Song J; Pan ZP; Hu JH; Jin CY; Wang X; Dietrich CF; Cui XW Eur Radiol; 2022 Jun; 32(6):4046-4055. PubMed ID: 35066633 [TBL] [Abstract][Full Text] [Related]
15. A Pivotal Study of Optoacoustic Imaging to Diagnose Benign and Malignant Breast Masses: A New Evaluation Tool for Radiologists. Neuschler EI; Butler R; Young CA; Barke LD; Bertrand ML; Böhm-Vélez M; Destounis S; Donlan P; Grobmyer SR; Katzen J; Kist KA; Lavin PT; Makariou EV; Parris TM; Schilling KJ; Tucker FL; Dogan BE Radiology; 2018 May; 287(2):398-412. PubMed ID: 29178816 [TBL] [Abstract][Full Text] [Related]
16. Automated classification of focal breast lesions according to S-detect: validation and role as a clinical and teaching tool. Di Segni M; de Soccio V; Cantisani V; Bonito G; Rubini A; Di Segni G; Lamorte S; Magri V; De Vito C; Migliara G; Bartolotta TV; Metere A; Giacomelli L; de Felice C; D'Ambrosio F J Ultrasound; 2018 Jun; 21(2):105-118. PubMed ID: 29681007 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided diagnosis system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators. Jeong EY; Kim HL; Ha EJ; Park SY; Cho YJ; Han M Eur Radiol; 2019 Apr; 29(4):1978-1985. PubMed ID: 30350161 [TBL] [Abstract][Full Text] [Related]
18. Role and clinical usefulness of elastography in small breast masses. Lee JH; Kim SH; Kang BJ; Choi JJ; Jeong SH; Yim HW; Song BJ Acad Radiol; 2011 Jan; 18(1):74-80. PubMed ID: 21115376 [TBL] [Abstract][Full Text] [Related]
19. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection. van Zelst JCM; Tan T; Platel B; de Jong M; Steenbakkers A; Mourits M; Grivegnee A; Borelli C; Karssemeijer N; Mann RM Eur J Radiol; 2017 Apr; 89():54-59. PubMed ID: 28267549 [TBL] [Abstract][Full Text] [Related]
20. Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound. Lee HJ; Kim EK; Kim MJ; Youk JH; Lee JY; Kang DR; Oh KK Eur J Radiol; 2008 Feb; 65(2):293-8. PubMed ID: 17531417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]