These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 28762559)
1. Improvement of amphotericin B production by a newly isolated Streptomyces nodosus mutant. Zhang B; Zhang HD; Zhou YT; Huang K; Liu ZQ; Zheng YG Biotechnol Appl Biochem; 2018 Mar; 65(2):188-194. PubMed ID: 28762559 [TBL] [Abstract][Full Text] [Related]
2. Enhanced amphotericin B production by genetically engineered Streptomyces nodosus. Huang K; Zhang B; Shen ZY; Cai X; Liu ZQ; Zheng YG Microbiol Res; 2021 Jan; 242():126623. PubMed ID: 33189073 [TBL] [Abstract][Full Text] [Related]
3. Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering. Zhang B; Chen Y; Jiang SX; Cai X; Huang K; Liu ZQ; Zheng YG Microb Cell Fact; 2021 Mar; 20(1):66. PubMed ID: 33750383 [TBL] [Abstract][Full Text] [Related]
4. Amphotericin B biosynthesis in Streptomyces nodosus: quantitative analysis of metabolism via LC-MS/MS based metabolomics for rational design. Zhang B; Zhou YT; Jiang SX; Zhang YH; Huang K; Liu ZQ; Zheng YG Microb Cell Fact; 2020 Jan; 19(1):18. PubMed ID: 32005241 [TBL] [Abstract][Full Text] [Related]
5. Biosynthetic studies of amphotericins, candicidin and nystatin by means of mutation. Liu YT Proc Natl Sci Counc Repub China B; 1984 Apr; 8(2):182-6. PubMed ID: 6443786 [TBL] [Abstract][Full Text] [Related]
6. Improvement of microbial strain and fermentation process of rapamycin biosynthesis. Baby Rani P; Battula SK; Rao AK; Gunja M; Narasu ML Prep Biochem Biotechnol; 2013; 43(6):539-50. PubMed ID: 23742086 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of deoxyamphotericins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus. Byrne B; Carmody M; Gibson E; Rawlings B; Caffrey P Chem Biol; 2003 Dec; 10(12):1215-24. PubMed ID: 14700629 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterisation of amphotericin B analogues and truncated polyketide intermediates produced by genetic engineering of Streptomyces nodosus. Murphy B; Anderson K; Borissow C; Caffrey P; Griffith G; Hearn J; Ibrahim O; Khan N; Lamburn N; Lee M; Pugh K; Rawlings B Org Biomol Chem; 2010 Aug; 8(16):3758-70. PubMed ID: 20571619 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the effects of different nitrogen sources and calcium on the production of amphotericin by Streptomyces nodosus based on comparative transcriptome. Huang K; Zhang B; Chen Y; Wu ZM; Liu ZQ; Zheng YG Biotechnol Appl Biochem; 2022 Aug; 69(4):1489-1501. PubMed ID: 34252982 [TBL] [Abstract][Full Text] [Related]
10. Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Caffrey P; Lynch S; Flood E; Finnan S; Oliynyk M Chem Biol; 2001 Jul; 8(7):713-23. PubMed ID: 11451671 [TBL] [Abstract][Full Text] [Related]
11. Approaches towards the enhanced production of Rapamycin by Streptomyces hygroscopicus MTCC 4003 through mutagenesis and optimization of process parameters by Taguchi orthogonal array methodology. Dutta S; Basak B; Bhunia B; Sinha A; Dey A World J Microbiol Biotechnol; 2017 May; 33(5):90. PubMed ID: 28390015 [TBL] [Abstract][Full Text] [Related]
12. Microbial production of amphotericin B-3H and the synthesis of its sodium desoxycholate (carboxyl-14C) complex and methyl-14C-ester. Monji N; Mechlinski W; Shaffner CP J Antibiot (Tokyo); 1976 Apr; 29(4):438-43. PubMed ID: 931813 [TBL] [Abstract][Full Text] [Related]
13. Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics. Power P; Dunne T; Murphy B; Nic Lochlainn L; Rai D; Borissow C; Rawlings B; Caffrey P Chem Biol; 2008 Jan; 15(1):78-86. PubMed ID: 18215775 [TBL] [Abstract][Full Text] [Related]
14. Improvement of lincomycin production by mutant selection and metabolic regulation. Pang X; Zheng Y; Qiao X; Mao Q; Ma Q; Ye R Prep Biochem Biotechnol; 2017 Aug; 47(7):639-643. PubMed ID: 27715470 [TBL] [Abstract][Full Text] [Related]
15. Avilamycin production enhancement by mutagenesis and fermentation optimization in Streptomyces viridochromogenes. Yu G; Peng H; Cao J; Liao A; Long P; Huang J; Hui M World J Microbiol Biotechnol; 2022 Jan; 38(3):50. PubMed ID: 35098381 [TBL] [Abstract][Full Text] [Related]
16. Enhanced doxorubicin production by Streptomyces peucetius using a combination of classical strain mutation and medium optimization. Wang X; Tian X; Wu Y; Shen X; Yang S; Chen S Prep Biochem Biotechnol; 2018; 48(6):514-521. PubMed ID: 29939834 [TBL] [Abstract][Full Text] [Related]
17. Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Xu B; Jin Z; Wang H; Jin Q; Jin X; Cen P Appl Microbiol Biotechnol; 2008 Aug; 80(2):261-7. PubMed ID: 18542945 [TBL] [Abstract][Full Text] [Related]
18. Production of amphotericin B-14C by Streptomyces nodosus fermentation, and preparation of the amphotericin B-14C-methyl-ester. Linke HA; Mechlinski W; Schaffner CP J Antibiot (Tokyo); 1974 Mar; 27(3):155-60. PubMed ID: 4836651 [No Abstract] [Full Text] [Related]
19. In situ detection of antibiotic amphotericin B produced in Streptomyces nodosus using Raman microspectroscopy. Miyaoka R; Hosokawa M; Ando M; Mori T; Hamaguchi HO; Takeyama H Mar Drugs; 2014 May; 12(5):2827-39. PubMed ID: 24828290 [TBL] [Abstract][Full Text] [Related]
20. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Carmody M; Byrne B; Murphy B; Breen C; Lynch S; Flood E; Finnan S; Caffrey P Gene; 2004 Dec; 343(1):107-15. PubMed ID: 15563836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]