BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28762559)

  • 1. Improvement of amphotericin B production by a newly isolated Streptomyces nodosus mutant.
    Zhang B; Zhang HD; Zhou YT; Huang K; Liu ZQ; Zheng YG
    Biotechnol Appl Biochem; 2018 Mar; 65(2):188-194. PubMed ID: 28762559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering.
    Zhang B; Chen Y; Jiang SX; Cai X; Huang K; Liu ZQ; Zheng YG
    Microb Cell Fact; 2021 Mar; 20(1):66. PubMed ID: 33750383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced amphotericin B production by genetically engineered Streptomyces nodosus.
    Huang K; Zhang B; Shen ZY; Cai X; Liu ZQ; Zheng YG
    Microbiol Res; 2021 Jan; 242():126623. PubMed ID: 33189073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphotericin B biosynthesis in Streptomyces nodosus: quantitative analysis of metabolism via LC-MS/MS based metabolomics for rational design.
    Zhang B; Zhou YT; Jiang SX; Zhang YH; Huang K; Liu ZQ; Zheng YG
    Microb Cell Fact; 2020 Jan; 19(1):18. PubMed ID: 32005241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthetic studies of amphotericins, candicidin and nystatin by means of mutation.
    Liu YT
    Proc Natl Sci Counc Repub China B; 1984 Apr; 8(2):182-6. PubMed ID: 6443786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of microbial strain and fermentation process of rapamycin biosynthesis.
    Baby Rani P; Battula SK; Rao AK; Gunja M; Narasu ML
    Prep Biochem Biotechnol; 2013; 43(6):539-50. PubMed ID: 23742086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of deoxyamphotericins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus.
    Byrne B; Carmody M; Gibson E; Rawlings B; Caffrey P
    Chem Biol; 2003 Dec; 10(12):1215-24. PubMed ID: 14700629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterisation of amphotericin B analogues and truncated polyketide intermediates produced by genetic engineering of Streptomyces nodosus.
    Murphy B; Anderson K; Borissow C; Caffrey P; Griffith G; Hearn J; Ibrahim O; Khan N; Lamburn N; Lee M; Pugh K; Rawlings B
    Org Biomol Chem; 2010 Aug; 8(16):3758-70. PubMed ID: 20571619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the effects of different nitrogen sources and calcium on the production of amphotericin by Streptomyces nodosus based on comparative transcriptome.
    Huang K; Zhang B; Chen Y; Wu ZM; Liu ZQ; Zheng YG
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1489-1501. PubMed ID: 34252982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes.
    Caffrey P; Lynch S; Flood E; Finnan S; Oliynyk M
    Chem Biol; 2001 Jul; 8(7):713-23. PubMed ID: 11451671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches towards the enhanced production of Rapamycin by Streptomyces hygroscopicus MTCC 4003 through mutagenesis and optimization of process parameters by Taguchi orthogonal array methodology.
    Dutta S; Basak B; Bhunia B; Sinha A; Dey A
    World J Microbiol Biotechnol; 2017 May; 33(5):90. PubMed ID: 28390015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial production of amphotericin B-3H and the synthesis of its sodium desoxycholate (carboxyl-14C) complex and methyl-14C-ester.
    Monji N; Mechlinski W; Shaffner CP
    J Antibiot (Tokyo); 1976 Apr; 29(4):438-43. PubMed ID: 931813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics.
    Power P; Dunne T; Murphy B; Nic Lochlainn L; Rai D; Borissow C; Rawlings B; Caffrey P
    Chem Biol; 2008 Jan; 15(1):78-86. PubMed ID: 18215775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of lincomycin production by mutant selection and metabolic regulation.
    Pang X; Zheng Y; Qiao X; Mao Q; Ma Q; Ye R
    Prep Biochem Biotechnol; 2017 Aug; 47(7):639-643. PubMed ID: 27715470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avilamycin production enhancement by mutagenesis and fermentation optimization in Streptomyces viridochromogenes.
    Yu G; Peng H; Cao J; Liao A; Long P; Huang J; Hui M
    World J Microbiol Biotechnol; 2022 Jan; 38(3):50. PubMed ID: 35098381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced doxorubicin production by Streptomyces peucetius using a combination of classical strain mutation and medium optimization.
    Wang X; Tian X; Wu Y; Shen X; Yang S; Chen S
    Prep Biochem Biotechnol; 2018; 48(6):514-521. PubMed ID: 29939834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling.
    Xu B; Jin Z; Wang H; Jin Q; Jin X; Cen P
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):261-7. PubMed ID: 18542945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of amphotericin B-14C by Streptomyces nodosus fermentation, and preparation of the amphotericin B-14C-methyl-ester.
    Linke HA; Mechlinski W; Schaffner CP
    J Antibiot (Tokyo); 1974 Mar; 27(3):155-60. PubMed ID: 4836651
    [No Abstract]   [Full Text] [Related]  

  • 19. In situ detection of antibiotic amphotericin B produced in Streptomyces nodosus using Raman microspectroscopy.
    Miyaoka R; Hosokawa M; Ando M; Mori T; Hamaguchi HO; Takeyama H
    Mar Drugs; 2014 May; 12(5):2827-39. PubMed ID: 24828290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques.
    Carmody M; Byrne B; Murphy B; Breen C; Lynch S; Flood E; Finnan S; Caffrey P
    Gene; 2004 Dec; 343(1):107-15. PubMed ID: 15563836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.