These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28762680)

  • 1. [Update on proteomic use in hemodialysis].
    Bonomini M; Sirolli V; Baroni S; Urbani A
    G Ital Nefrol; 2017 Aug; 34(4):28-34. PubMed ID: 28762680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Investigations into Hemodialysis Therapy.
    Bonomini M; Sirolli V; Pieroni L; Felaco P; Amoroso L; Urbani A
    Int J Mol Sci; 2015 Dec; 16(12):29508-21. PubMed ID: 26690416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New horizon in dialysis depuration: Characterization of a polysulfone membrane able to break the 'albumin wall'.
    Cuoghi A; Caiazzo M; Monari E; Bellei E; Bergamini S; Sereni L; Aucella F; Loschiavo C; Atti M; Tomasi A
    J Biomater Appl; 2015 May; 29(10):1363-71. PubMed ID: 25542733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining hemodialyzer membrane performance using proteomic technologies.
    Bonomini M; Pieroni L; Di Liberato L; Sirolli V; Urbani A
    Ther Clin Risk Manag; 2018; 14():1-9. PubMed ID: 29296087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic Characterization of a New asymmetric Cellulose Triacetate Membrane for Hemodialysis.
    Ronci M; Leporini L; Felaco P; Sirolli V; Pieroni L; Greco V; Aceto A; Urbani A; Bonomini M
    Proteomics Clin Appl; 2018 Nov; 12(6):e1700140. PubMed ID: 29808585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future Avenues to Decrease Uremic Toxin Concentration.
    Vanholder RC; Eloot S; Glorieux GL
    Am J Kidney Dis; 2016 Apr; 67(4):664-76. PubMed ID: 26500179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Rationale for Expanded Hemodialysis Therapy (HDx).
    Hutchison CA; Wolley M
    Contrib Nephrol; 2017; 191():142-152. PubMed ID: 28910797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics characterization of protein adsorption onto hemodialysis membranes.
    Bonomini M; Pavone B; Sirolli V; Del Buono F; Di Cesare M; Del Boccio P; Amoroso L; Di Ilio C; Sacchetta P; Federici G; Urbani A
    J Proteome Res; 2006 Oct; 5(10):2666-74. PubMed ID: 17022637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics Investigations into Serum Proteins Adsorbed by High-Flux and Low-Flux Dialysis Membranes.
    Han S; Yang K; Sun J; Liu J; Zhang L; Zhao J
    Proteomics Clin Appl; 2017 Dec; 11(11-12):. PubMed ID: 28795537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of the uremic toxin p-cresol onto hemodialysis membranes and microporous adsorbent zeolite silicalite.
    Wernert V; Schäf O; Faure V; Brunet P; Dou L; Berland Y; Boulet P; Kuchta B; Denoyel R
    J Biotechnol; 2006 May; 123(2):164-73. PubMed ID: 16388867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics and Protein Adsorption on Hemodialysis Membranes.
    Bonomini M
    Proteomics Clin Appl; 2017 Dec; 11(11-12):. PubMed ID: 29064629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Update of uremic toxin research by mass spectrometry.
    Niwa T
    Mass Spectrom Rev; 2011; 30(3):510-21. PubMed ID: 21328600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics and metabolomics as tools to unravel novel culprits and mechanisms of uremic toxicity: instrument or hype?
    Mullen W; Saigusa D; Abe T; Adamski J; Mischak H
    Semin Nephrol; 2014 Mar; 34(2):180-90. PubMed ID: 24780472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility assessment of haemodialysis membrane materials by proteomic investigations.
    Pieroni L; Levi Mortera S; Greco V; Sirolli V; Ronci M; Felaco P; Fucci G; De Fulviis S; Massoud R; Condò S; Capria A; Di Daniele N; Bernardini S; Urbani A; Bonomini M
    Mol Biosyst; 2015 Jun; 11(6):1633-43. PubMed ID: 25845767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the uremic toxins using proteomic technologies.
    Schiffer E; Mischak H; Vanholder RC
    Contrib Nephrol; 2008; 160():159-171. PubMed ID: 18401168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different dialyzer membranes on serum angiotensin-converting enzyme during hemodialysis.
    Docci D; Delvecchio C; Turci F; Baldrati L; Gollini C
    Int J Artif Organs; 1988 Jan; 11(1):28-32. PubMed ID: 2834297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute effects of hemodialysis on lung function in patients with end-stage renal disease.
    Lang SM; Becker A; Fischer R; Huber RM; Schiffl H
    Wien Klin Wochenschr; 2006 Mar; 118(3-4):108-13. PubMed ID: 16703255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane Innovation in Dialysis.
    Boschetti-de-Fierro A; Beck W; Hildwein H; Krause B; Storr M; Zweigart C
    Contrib Nephrol; 2017; 191():100-114. PubMed ID: 28910794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption dialysis: from physical principles to clinical applications.
    Aucella F; Gesuete A; Vigilante M; Prencipe M
    Blood Purif; 2013; 35 Suppl 2():42-7. PubMed ID: 23676835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro study of dual layer mixed matrix hollow fiber membranes for outside-in filtration of human blood plasma.
    Ter Beek OEM; van Gelder MK; Lokhorst C; Hazenbrink DHM; Lentferink BH; Gerritsen KGF; Stamatialis D
    Acta Biomater; 2021 Mar; 123():244-253. PubMed ID: 33450414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.